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� Introduction

The design of the ATLAS liquid argon calorimeter signal feedthrough assembly has gone
through detailed �nite element analyses �FEA� to ensure the integrity of the assembly un�
der the pressure di�erences we expect� Results of the FEA have been useful in determining
many parameters of the feedthrough assembly design�

Finite element analyses of the component parts of the feedthrough assembly are
being carried out using the ANSYS code �� Deformation and stress created in the
feedthrough by the application of mechanical and pressure loads and from cooling part of
the feedthrough to liquid argon temperature have been studied� as well as the temperature
of the vacuum cables under various operating currents�

�ANSYS v��� Swanson Analysis Systems Inc��Houston�PA�USA

�



� Cold Flange Study �Release of ��������	

The cold �ange was originally designed with a thickness of ��� inches �
� mm�� The
model has then been modi�ed by reducing the �ange thickness to ��� inches �
 mm� to
enable cutting from ��� inch stock� The pin carriers were reduced in depth to ��� inches
by reducing the �skirt� part of the carrier between the weld lip and the region where
the socket begins� The resulting �nite element model of half a cold �ange is shown in
Figure �� In this model� the pin carriers are mounted on di�erent sides of the �ange�

Under an applied load of � bars and compared to the ��� inch model� the maximum
de�ection in the direction of the applied pressure increases from ���
 mm to ���� mm�
The �Von Mises� stress in the corner where the pins carrier meets the �ange increases
from �		 MPa to �
 MPa� De�ection and stress for the ��� inch cold �ange are shown
in Figure 	 and Figure 
 respectively� Note that the yield and ultimate stress values for
the �ange and pin carrier material �AISI 
��L stainless steel� are ��	 MPa and ��
 MPa
respectively�

Figure � shows that the high stress region is very localized and does not extend
to the region where the pins are sealed to the stainless carrier� the stress in this region
remains low �� �
 MPa� as required�
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 Cold Flange Study �Release of ��������	

The manufacturing of �� connector pin carriers has been considered by Ceramaseal� The
�nite element analysis model for the cold �ange was modi�ed accordingly� replacing the
� and � connector pin carriers with a single �� connector pin carrier� One small di�erence
between the present model and the earlier ones is the omission of the small section of
cylindrical �skirt� attached to the outer edge of the �ange �this would have an insigni�cant
e�ect on the results�� The �nite element model of half a cold �ange is shown in Figure ��

The results are a little surprising at �rst glance� the bending of the �ange under
the pressure load of � bars increases only slightly from ���� mm to �� mm �see Figure ��
On re�ection� this is understandable� since the removal of the thick horizontal section
between the � and � connector pin carriers is replaced in part by the �� pin carrier thick
sections and the cut�out section of the �ange is reduced in size and is centered� The other
surprise is that the stress in the corners of the pin carrier is reduced from �
 MPa to
��	 MPa �see Figure �� � The reason is that the high stress region of the � and � pin
carriers was located at the corners close to the centre of the �ange� In the �� connector
version� these corners do not exist� and the high stress region is in the corners near the
centerline of the �ange but much farther from the centre� The model does not include
the extra material at the ends of the �� connector carrier� as suggested by Ceramaseal�
but this is not expected to produce a signi�cant change in the results�

Note that the yield and ultimate stress values for the �ange and pin carrier material
�AISI 
��L stainless steel� are �	
� MPa and ��
 MPa respectively�
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� Cold Flange Study �Release of ��������	

The cold �ange described in drawing GBL 	������������ is modelled for �nite element
analysis� As for previous analyses� half the �ange is modelled using the symmetry plane
of the �ange� The pin carriers are considered joined to the �ange over a � mm wide strip
around the lip of the pin carrier weld �ange �simulating the weld�� Details of the model
are shown on Figure �� Figure � and Figure ��� A pressure of � bars is applied to the
�ange face and to the pin carriers on the surface where the welding was done� The �ange
is supported at the outer edge�

This analysis addresses the question of whether the pin carrier web can be safely
reduced to ��� mm thick� and what is the required cold �ange thickness�

Reducing the pin carrier web thickness has little e�ect on the �ange de�ection or
on the maximum stress levels �which occur at the inner surface of the corners of the pin
carrier weld �ange�� In the region of the web penetrated by the signal pins� there is a
general reduction in stress level� There is� however� a very small ���� increase in the
localized maximum stress�

Reduction of the �ange thickness causes increased de�ection and an increase in
the maximum stress level in the pin carrier corners� Varying the �ange thickness has
a somewhat more complex e�ect on the pin carrier in the region of the web penetrated
by the signal pins� A thicker �ange produces lower general stress levels in the web but
increases the maximum stress in localized areas� As the �ange thickness is reduced� the
general stress levels rise slowly and the maximum �localized� stress falls� and then begins
to rise again�

De�ection and stress for a 
 mm ���� inch� cold �ange with a ��� mm thick pin
carrier web are shown in Figure ��� Figure �	 and Figure �
� Results for various �ange
thickness are shown in Table ��

Note that the yield and ultimate stress values for the �ange and pin carrier material
�AISI 
��L stainless steel� are ��	 MPa and ��
 MPa respectively�

�ange
thickness

�ange web
thickness

pressure de�ection pin carrier
corner
stress

maximum
web stress
in pin
region

general
web stress
in pin
region

�mm� �mm� �bars� �mm� �MPa� �MPa� �MPa�

	 
�
 � ����� �
� �
 ����

	 ��� � ����� �
� �� 
�

 ��� � ����� ��� �� 	�

��� ��� � ���	 ��� �� ��
	� ��� � ����� � � ���

Table �� De�ection and stress for cold �ange�
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Figure �� Detail of the �nite element analysis model of the cold �ange� Section through
the �ange and pin carrier� Dimensions in metres�

Figure ��� Detail of the �nite element analysis model of the cold �ange� Enlarged section
showing the �ange and pin carrier joint� Dimensions in metres�
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� Ambient Flange Study �Releases of �������� and

�������	

The ambient �ange described in drawing GBL 	������������ is modelled for �nite ele�
ment analysis� As for previous analyses� half the �ange is modelled using the symmetry
plane of the �ange� The pin carriers are considered joined to the �ange over a � mm wide
strip around the lip of the pin carrier weld �ange �simulating the weld�� The pin carrier
web thickness is ��� mm� Pressures of � bar and � bars are applied to the �ange face and
to the pin carriers on the surface where the pin carriers are welded to the �ange� The
�ange is supported at the outer edge�

Results for de�ection and �Von Mises� stress for an ambient �ange 		�� mm ���� inch�
thick under an applied load of � bar are shown in Figure ��� Figure �� and Figure ��
Results for � bars are shown in Figure ��� Figure �� and Figure ���

As expected� the de�ection and stresses change linearly with the applied pressure
while the model remains elastic� The highest stress in the �ange and pin carrier occurs�
as usual� in the corner of the pin carriers near the �ange centre� Results are summarized
in Table 	�

The way in which the �ange would likely fail under pressure load can be inferred
from Figure 	�� The high stress region near the centre of the plate between the two
� connector pin carriers would probably buckle� the feedthrough might already be leaking
due to cracking at the pin carrier corners or at the weld�

The use of a 
 mm ���� inches� thick ambient �ange is also considered for possible
operation with service at the cold �ange position� Results for de�ection and stress for this
thick ambient �ange under an applied load of � bars are shown in Figure 	�� Figure 		
and Figure 	
� and are summarized in Table 	�

Comparing Figure 	� with Figure 	� we see that the maximum stress in the �ange
reduces from �
 MPa to � MPa� Note that the yield and ultimate stress values for the
�ange and pin carrier material �AISI 
��L stainless steel� are �	
� MPa and ��
 MPa
respectively�

The results are in accord with the �ndings for the cold �ange� There is an optimum
thickness for the plate in terms of pin carrier web stresses� but one must also consider
the stress in the corner of the pin carriers and in the �ange� especially in the regions near
the plate centre� The smaller diameter ambient �ange� with the same thickness as the
cold �ange ���� inches�� is slightly sti�er than the cold �ange� The pin carrier stresses
are therefore slightly increased� while the pin carrier corner stress and �ange stress are
slightly reduced� Some ��ne tuning� on the thickness of the �ange and position of the
pin carriers would make some small improvement�

	�



�ange
thickness

�ange web
thickness

pressure de�ection pin carrier
corner
stress

maximum
web stress
in pin
region

general
web stress
in pin
region

�mm� �mm� �bars� �mm� �MPa� �MPa� �MPa�
		�� ��� � ����� � � ����	
		�� ��� � ��	�� 		� 	� 	���

 ��� � ����� ��� 	� 
���

Table 	� De�ection and stress for ambient �ange�
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� Ambient Flange with attached Seal Ring �Release

of ��������	

The ambient �ange with the seal ring attached by a �weld� � mm thick �in radial direction�
and 
 mm in depth �Z�direction� through the �ange thickness� is modelled for �nite
element analysis� As before� half the �ange was modelled using the symmetry plane of
the �ange� Pressure of � bar was applied to the �ange face and pin carriers on the surface
where the pin carriers are welded to the �ange� The �ange is supported by the seal ring
which in turn was �xed in the Z�direction at the surface which would be clamped against
the cryostat wall by the bolt ring� The model is shown on Figure 	��

The results for the ambient �ange are quite similar to those obtained previously �see
section ��� De�ection slightly increases from �� �m to �
 �m �see Figure 	� and pin
carrier corner stresses slightly reduce from � MPa to �
 MPa �see Figure 	��� The pin
carrier web stresses are little changed �see Figure 	���

The region of interest for this study is in the weld� The maximum stresses occur in
the region where the corners of the pin carriers are closest to the �ange perimeter� See
Figure 	�� The maximum stress is small� 	� MPa� and a weld of this nature should be
quite adequate�
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� Feedthrough Funnel �Release of ��������	

Several �nite element analyses are performed on the �funnel� section of the signal
feedthroughs� The large diameter cylinder end is restrained from all motion and the
whole model from motion perpendicular to the symmetry plane� A force of �
�� Newtons
is applied to the free end of the smaller diameter cylinder end� simulating the force on
the funnel due to the internal pressure of 
�� bar� A force of �� Newtons can also be
applied at the same location but in a lateral direction� simulating the force required to
displace the bellows laterally by �� mm� this displacement occurring due to contraction
of the barrel cryostat on cooling to liquid argon temperature �this e�ect is not present in
the endcaps��

A funnel formed as a uniform shell of � mm wall thickness is �rst studied� Results
show that it would have a maximum stress of �
 MPa for 
�� bar pressure load only
�see Figure 
��� and 		� MPa with the lateral force added� This is to be compared with
the yield stress of 	�� MPa� The stress is found to rise rapidly as the wall thickness is
decreased� The stress decreases from 		� MPa to ���� MPa if the wall thickness is incresed
from � mm to  mm �see Figure 
���

A funnel constructed from two cylinders joined by a �ange is then studied� varying
the thickness of the �ange section and cylindrical sections of the funnel� The �nite element
model used is shown on Figure 
	� along with pressure and lateral forces� For a � mm
thick �ange and �� mm thick cylinders under a load of 
�� bar� the maximum stress level
increases from �� MPa �see Figure 

� to ��
 MPa �see Figure 
�� when the lateral forces
are included�

The thickness of the �ange exerts the most control over the maximum stress level�
For �� mm thick cylinders� it falls from ��
 MPa for a � mm thick �ange �see Figure 
��
to ��� MPa for a �� mm thick �ange �see Figure 
�� and to ��� MPa for a 	� mm thick
�ange �see Figure 
�� Increasing the lower cylinder wall thickness produces a slower
reduction in stress� as seen from comparing Figure 
� with Figure 
� where doubling the
cylinder wall thickness reduces the maximum stress by ����

The e�ect of locally thickening the lower cylinder wall is shown in Fig�
ures 
�� 
� and ��� Compared to Figure 

� a lip of � mm� � mm and �	 mm� respectively�
is added the junction between the �ange and the small cylinder� The local thickening must
extend down the cylinder more than � mm before any e�ect is seen� For the �	 mm lip
case� the maximum stress level of �
�� MPa �see Figure ��� decreases to �� MPa if the
small cylinder wall thickness is increased from �� mm to 	� mm �see Figure ���� It then
increases to ��	 MPa if the lateral load is added �see Figure �	��
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 Feedthrough Funnel and Bi�metal Joint �Release

of ��������	

The bi�metal joint is added to the model of the feedthrough �funnel� adaptor� The open
end of the aluminum section of the bi�metal joint is restrained from lateral and vertical
motion and the normal symmetry constraints are applied at the symmetry plane of the
model� The �ange is � mm thick and the cylinders are �� mm thick� The smaller
diameter cylinder of the funnel is attached at its lower end to the adjacent tube �mauve
colour in Figure �
� by a 	 mm weld section� The latter tube is attached at its upper
end to the bi�metal joint �blue colour in Figure �
� by a similar 	 mm weld� A force
of �
�� Newtons is applied to the open end of of the funnel larger diameter cylinder�
simulating the force on the funnel due to the internal pressure of 
�� bar� A force of
�� Newtons is also applied at the same location in a lateral direction� simulating the
force required to displace the bellows laterally by �� mm� this displacement occurring due
to contraction of the barrel cryostat on cooling to liquid argon temperature �this e�ect is
not present in the endcaps�� The forces applied are shown in Figure ���

The maximum stress occurs �as in the earlier model without the bi�metal adaptor� at
the funnel plate and lower cylinder junction� The stress is lower� ��� MPa �see Figure �	��
compared to the previous value of ��
 MPa �see Figure 
��� probably due to a more
uniform distribution of the lateral force by the adaptor� The maximum stress of �� MPa
in the transition joint region occurs near the weld at the lower edge of the smaller funnel
cylinder �see Figure �	��� The stress in the bi�metal union is low� less than  MPa�

Displacemement in the x direction �left to right� are shown in Figure ��� displace�
mements in the z direction �bottom to top� are shown in Figure ��
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� Stripline Temperatures �Release of �������
	

The vacuum stripline is modelled for �nite element analysis to investigate the e�ect the
current supply to the HEC cold electronics would have on the stripline temperature� The
�rst model is a single signal copper trace on a ground trace� separated by the kapton base
material� The dimensions of the model are taken from the current design with a length
of 
�� mm �See Figure ���� The values used for the resistivity and thermal conductivity
of the copper are temperature dependent but the kapton thermal conductivity is �xed at

 Wm�K�

The ends of the stripline are held at 
�� K and �� K� The heat �ow due to the
temperature gradient alone is ��� mW in the signal trace alone and ���
 mW for a signal
plus ground pair of traces� The temperature of the signal stripline for several values of
current is shown in Figure ��� The current �ows only in the signal trace� the return
current is assumed distributed widely enough to have no e�ect� The heat transfer from
the signal trace via the kapton to the ground trace is included �the temperature di�erence
between the signal and ground traces is very small�� It appears the current in a single
trace should be limited to �	����� mA� to accommodate the required ��� A supply we
will have to modify some of the striplines�

If we increase the width of the signal trace to match the ��
�� mm wide ground
trace� it could handle 	�� mA� and using two such traces for each current supply would
give the required ��� mA capability� See Figure ���

If we increase the copper signal trace thickness� as suggested by V� Radeka� �say
by a factor of 	� and also retain the wide signal trace mentioned above� we could easily
manage ��� mA on two traces� and� in the event of a failure of one of the traces in a pair�
the whole ��� mA could be delivered on one trace� In Figure �� the dashed curve shows
the temperature of a single trace carrying the ��� mA� and the lower curve a single trace
carrying 	�� mA� If the trace carrying ��� mA is between two traces carrying 	�� mA�
the temperature pro�le of all three traces is modi�ed to that shown in the centre curve�

The heat load into the liquid argon �with no current �ow� will be increased by a
factor of 	 for the latter option for each pin used for current supply� Generally the heat
�ow into the liquid argon is the sum of the heat conducted down the stripline plus the
Joule heating from the current� If the temperature in the stripline is raised above the
warm �ange temperature however� some fraction of the heat will �ow out of the warm
�ange�

Other possible scenarios could include leaving the entire ground plane of the stripline
un�etched� and�or leaving pairs of current supply lines un�etched to form a single conduc�
tor� which could be joined to two adjacent pins in the pin carrier�






copper

0.152

0.035

0.038

0.035

0.305

copper

kapton

Figure ��� Finite element analysis model of one signal and return trace of the vacuum
stripline� Dimensions in millimetres�

�



Figure ��� Temperature of vacuum stripline as a function of the distance from the ambient
�ange for several current values�

�



Figure ��� Temperature of vacuum stripline as a function of the distance from the ambient
�ange for one current value� The signal trace width is doubled to 
�� �m�





Figure ��� Temperature of vacuum stripline as a function of the distance from the ambient
�ange for several current values� The signal trace width is doubled to 
�� �m� and the
signal trace thickness is doubled to �� �m�

�



�� Ambient Flange Temperature �Release of

��������	

The temperature distribution in the ambient �ange arising from the heat drain down the
signal and ground connections to the cold �ange is studied using �nite element analysis�
A heat drain of � mW per signal�plus�ground trace pair is assumed� This heat is removed
uniformly over the ��� mm thick webs of the pin carriers� Three locations around the
edge of the �ange were held at 
�� K to simulate the e�ect of three heating resistors� The
result can be seen in the temperature contour plot in Figure ��� The red �
�� K� regions
are the locations of the resistors and the minimum temperatures� some � K lower� are in
the central regions of the pin carriers� An extra resistor at the centre of the �ange gave a
small �	�� K� improvement but would not be worth adding in practice� The temperature
drop across the pin�ceramic region is found to be negligible �about ���� K��
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�� Low Tension Current Supplies to HEC Cir�

cuit Boards via Signal Feedthroughs �Release of

��������	

The �standard� signal cable� which connects each pair of ��pin connectors in the ambient
�
�� K� and cold ��� K� �anges of the Barrel and Endcap signal feedthroughs� is a �exible
circuit stripline� The �exible circuit is a sandwich of 
� �m thick kapton between two
layers of 
� �m thick copper� Each pin in the feedthrough is connected to a copper trace
	�� �m wide etched in one of the copper surfaces and is opposite a ��� �m wide ground
trace on the other copper surface� Such an arrangement provides the correct impedance
for the signal lines� Two pins� a supply and ground� are required for each HEC Low
Tension �LT� current supply �a common ground is not suitable�� The Joule heat from
the current �owing in a trace is conducted down the trace� and also via the kapton layer
to the common ground trace� to be deposited in the �anges and cables connected to the
feedthrough� To maximize the current carrying capability of the stripline� it is proposed
the 	�� �m wide signal trace be increased to ��� �m wide to match the common ground
trace� It might also be desirable to increase the thickness of the copper to further increase
current carrying capability�

Consider a warm calorimeter and assume the ends of the current supply striplines
are held at 
�� K� The maximum temperature rise in a stripline as a function of current is
shown in Figure �	 for three di�erent copper thickness arrangements� The stars indicate
the required current supplies for each hadronic module� Consider the curve for 
� �m
thick signal and ground trace� and assume the temperature rise must not exceed � K� The
maximum current allowed on a single line would be �	�� mA� The maximum required
current of 	� mA would have to be supplied by three separate lines� others would require
two lines� and those below 	�� mA only one� In the latter scenario� the eight modules in
a quadrant of the calorimeter would require � � �� � 
�� lines� The single feedthrough
which must supply these lines has a maximum of  � � � 
�� signal lines available for
LT supply � precisely the number of lines required�

However� it might be deemed prudent to have at least a few �spare� lines available�
in that case one of the other two options shown in Figure �	 might be adopted� In either
of these cases a total of � � 
 � 	�� lines would be required� leaving � �spare� lines
per quadrant� The latter options would also reduce the maximum temperature rise in the
stripline to ����� K but at the expense of making the stripline sti�er�

��



Figure �	� Maximum temperature rise of vacuum stripline as a function of the current
for a warm calorimeter� Curves for various thicknesses of the signal trace and the ground
trace are shown� The stars indicate the required current supplies for each hadronic module
Both signal and ground traces are ��� �m wide�

��



�� E�ect of Cooling Ambient Feedthrough Flange in

LN vapour �Release of �������
	

A number of tests are carried out on components and sub�assemblies of the ATLAS signal
feedthrough as they are built� One such test on an ambient feedthrough �ange caused
leaks to develop in the pin carriers� The test involved cooling the �ange by natural
convection in the cold nitrogen gas above the liquid nitrogen in a container� To estimate
the magnitude of the thermal stress induced by such cooling an FEA model of the ambient
feedthrough �ange was subjected to a cooling process which approximates those in the
test� The assumptions made to apply convective cooling to the �ange and pin carrier
surfaces were as follows�

� Horizontal warm surfaces facing upward� heat transfer coe�cient � �	 Wm��K��

� Horizontal warm surfaces facing downward� heat transfer coe�cient � 	�� Wm��K��

� Vertical surfaces� heat transfer coe�cient � �	 Wm��K��

The bulk cold gas temperature was assumed to be �� K and the initial �ange temperature

�� K�

The ANSYS program was used to produce the time dependent temperature �elds in
the �ange and pin carriers� Figure �
 shows the temperature contours for the �ange after
cooling for �� minutes� Figure �� shows the maximum and minimum temperature points
on the �ange as a function of time� The maximum temperature di�erence in the �ange
occurs after about �� minutes of cooling� The temperatures in the �ange after �� minutes
of cooling were applied in a static analysis to compute the thermal stresses� Figure ��
shows the Von Mises stresses in the pin carrier web �which contains the signal pins�� The
maximum stress in the vicinity of the pins is above ��� MPa� about 	� to �� times the
maximum stress seen in normal usage and uncomfortably large� There were also localized
stresses in the areas where the pin carriers are welded to the �ange of ��� MPa �cf yield
stress of �	
� MPa��

The same conditions applied to the cold �ange would probably have a more severe
e�ect �since the thermal mass of the cold �ange is ��� greater than the ambient �ange��
increasing the temperature di�erences and thermal stresses during the cooling process�

�	
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Figure ��� Ambient �ange minimum and maximum temperature in K after cooling �� min�
utes in nitrogen gas at �� K�
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�
 Updated Cold and Ambient Flanges Study �Re�

lease of ��������	

The models of the ambient and cold signal feedthrough �anges have been modi�ed as well
as the pressure loading on them to comply with the requirements set out in the ATLAS
Project Document ATL�CERN�A�CERN����	 �Larg Cryostats � Load Cases for the
Cryostats and Feedthroughs�� I have used the barrel cryostat feedthrough data since the
quoted pressures for calculations are generally slightly ���� bar� larger than those for the
endcap�

For the cold �ange� the maximum pressure for �Normal� situation �N�� is 	�� bar
with ��� bar added to allow for extra hydrostatic pressure on a feedthrough in the lower
part of the cryostat� The maximum pressure of 
�� bar experienced during the �Proof
Test� situation �T�� is larger than all of the �Exceptional� situations� The results of the
�nite element analysis performed at the two pressures 	�� bar and 
�� bar are summarized
in the �rst two rows of Table 
 and in Figures �� ��� ��� �� and ��

The ambient �ange under normal conditions has a maximum pressure load of � bar�
Under the exception situation of a leak from the argon space into the bellows vacuum
space of the feedthrough� a reverse pressure of 	�
 bar �
�
 bar less the atmospheric load�
could be developed� The �nite element analysis results for the �ange under the latter load
conditions is summarized in the last two rows of Table 
 and in Figures �� 	� 
� � and
��

�ange
type

pressure de�ection maximum
pin carrier
stress

maximum
�ange
stress

�gures

�bars� ��m� �MPa� �MPa�
cold 	�� ��� ���� 
��� �� ��
cold 
�� ���� ��
 ���� ��� ��� �

ambient ��� �
�
 �
� 	�� �� 	
ambient �	�
 ����� ���� ��� 
� �� �

Table 
� De�ection and stress for cold and ambient �anges� Negative pressure and de�ec�
tion are in opposite direction to normal atmospheric loading�
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�� Stresses Induced by Welding of Pin Carriers into

Ambient Flange �Release of �������	

The �nite element analysis model of the ambient temperature signal feedthrough �ange
of thickness 		�� mm has been modi�ed to include a weld preparation �rim� around the
edges of the holes in the �ange wherein the pin carriers are welded� Figure  shows
a general view of �half� the ambient temperature �ange and Figures � and � show a
closer view of the �ange weld preparation and a pin carrier respectively� The pin carrier
�skirt� is the thin walled region between the the edge of the pin carrier that is welded to
the �rim� of the �ange� and the thick region of the pin carrier into which the signal cable
plugs are inserted� The pin carrier �web� is the region of the pin carrier that contains the
signal pins�

A series of calculations were made to determine the stresses developed in critical
regions of the assembly� caused by de�ection of the �ange as a result of welding the pin
carriers into the �ange�

Vertical de�ection �perpendicular to the �ange face and typically �� �m in magni�
tude� was produced by applying a pressure �� bar� to the face of the �ange around the pin
carriers� Calculations were performed for di�erent pin carrier skirt length and thickness
and for three pin carrier web thicknesses� and are shown in Table ��

Figures �
� �� and �� show the regions where the von Mises stresses are a maximum
in the �ange� the pin carrier� and the pin carrier web�

case
no�

web
thick�
ness

skirt
thick�
ness

skirt
length

maximum
�ange
stress

maximum
pin carrier
corner
stress

maximum
pin carrier
web stress

�g�
ure

�mm� �mm� �mm� �MPa� �MPa� �MPa�
� ��� ��� � �	�� ���� ��	 �
	 ��� ��� � ���� ���� ��� ��

 ��� ��� �� ���� 
��� �	 ��
� ��� ��� � ���	 ���� ��� �	
� ��� ��� � ��� 
��	 ��	 ��
 ��� ��� �� ���	 
��� ��� �
� 	�� ��� � �	�	 ���� ��� ��
� ��� ��� � ���� ���� ��� ��
� ��� ��� � ���� �
�� 
�� ��
�� ��� ��� �� �
�
 
�� 
�	 ��

Table �� Maximum �Von Mises� stress in critical regions of a 		�� mm thick ambient
�ange for various pin carrier web thicknesses� skirt thicknesses and skirt lengths under an
applied load of � bar�

To simulate �crudely� the e�ect on the pin carriers of in�plane distortion of the
�ange due to welding� the region where the pin carrier rim is welded to the �ange weld

��



preparation was subjected to a � K temperature reduction� resulting in a shrinking of this
region relative to all other regions� The temperature contours are shown in Figure ��� The
magnitude of the temperature change was chosen to produce a maximum stress amplitude
in the vicinity of the weld approximately equal to the material yield strength� The stresses
produced in the pin carrier webs due to the compressive forces thus generated �plus the
vertical de�ection of �	 �m produced by the cooling� were investigated �see Table ���

case
no�

web
thick�
ness

skirt
thick�
ness

skirt
length

maximum
�ange
stress

maximum
pin carrier
corner
stress

maximum
pin carrier
web stress

�g�
ure

�mm� �mm� �mm� �MPa� �MPa� �MPa�
�� ��� ��� � 	� �� ���	 �	
�	 ��� ��� � 	�� �� ���� �

�
 ��� ��� � 	� ��� �
�� ��

Table �� Maximum �Von Mises� stress in critical regions of a 		�� mm thick ambient
�ange for various pin carrier web thicknesses and skirt lengths upon welding of the pin
carrier into the ambient �ange� See text�

For the vertical �ange distortion� there appears to be a broad minimum in the pin
carrier web stress versus skirt length� for a given skirt thickness� e�g� in cases �� � and 
above� the � mm skirt length is preferable over the � mm or �� mm skirt length� As the
pin carrier web thickness increases� the optimum skirt length increases�

For the in�plane �ange distortion� a slow decrease in the maximum pin carrier web
stress is seen with increasing skirt length and increasing web thickness�

For the likely range of web thicknesses �	 mm to � mm� a skirt length of � mm and
thickness of ��� mm is a reasonable choice� with no foreseen problems in manufacturing�

For the typical �� �m �ange de�ection� the �ange and pin carrier corner stresses
are modest and localized and would probably be acceptable with de�ection several time
larger� The pin carrier web stresses� however� should be kept to a minimum� �ange
de�ection above 	�� �m should be avoided�

��



F
ig
u
re

�
F
in
it
e
el
em
en
t
an
al
y
si
s
m
o
d
el
of
�h
al
f�
an
am
b
ie
n
t
�
an
ge
		
��
m
m
th
ic
k
�

��



F
ig
u
re
�
�
F
in
it
e
el
em
en
t
an
al
y
si
s
m
o
d
el
of
am
b
ie
n
t
�
an
ge
sh
ow
in
g
d
et
ai
ls
of
th
e
w
el
d
p
re
p
ar
at
io
n
�

��



F
ig
u
re
�
�
F
in
it
e
el
em
en
t
an
al
y
si
s
m
o
d
el
of
a
p
in
ca
rr
ie
r
w
it
h
a
��
m
m
sk
ir
t
le
n
gt
h
an
d
a
�
m
m
sk
ir
t
th
ic
k
n
es
s�

��



F
ig
u
re
�
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

��
�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

�	



F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

��
�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

�




F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

��
�
m
m
an
d
le
n
gt
h
��
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

��



F
ig
u
re
�	
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

��



F
ig
u
re
�

�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
th
e
�
an
ge
re
gi
on
w
it
h
m
ax
im
u
m
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

�



F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
th
e
re
gi
on
of
th
e
p
in
ca
rr
ie
r
w
it
h
m
ax
im
u
m
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad

of
�
b
ar
�

��



F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

��



F
ig
u
re
�
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
��
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

��



F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
	�
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

���



F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

���



F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

��	



F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
��
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
n
d
er
an
ap
p
li
ed
lo
ad
of
�
b
ar
�

��




F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
th
e
te
m
p
er
at
u
re
p
re
p
ar
at
io
n
�i
n
K
w
it
h
re
sp
ec
t
to
th
e
�
an
ge
�
si
m
u
la
ti
n
g
w
el
d
in
g
of
th
e
p
in

ca
rr
ie
r
in
to
th
e
am
b
ie
n
t
�
an
ge
�
S
ee
te
x
t�

���



F
ig
u
re
�	
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
p
on
w
el
d
in
g
of
th
e
p
in
ca
rr
ie
r
in
to
th
e
am
b
ie
n
t
�
an
ge
�
S
ee
te
x
t�

���



F
ig
u
re
�

�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
p
on
w
el
d
in
g
of
th
e
p
in
ca
rr
ie
r
in
to
th
e
am
b
ie
n
t
�
an
ge
�
S
ee
te
x
t�

��



F
ig
u
re
��
�
F
in
it
e
el
em
en
t
an
al
y
si
s
of
an
am
b
ie
n
t
�
an
ge
w
it
h
th
ic
k
n
es
s
		
��
m
m
��
��
in
ch
es
��
w
eb
th
ic
k
n
es
s
��
�
m
m
�
sk
ir
t
th
ic
k
n
es
s

�
m
m
an
d
le
n
gt
h
�
m
m
sh
ow
in
g
�V
on
M
is
es
�
st
re
ss
in
P
as
ca
ls
u
p
on
w
el
d
in
g
of
th
e
p
in
ca
rr
ie
r
in
to
th
e
am
b
ie
n
t
�
an
ge
�
S
ee
te
x
t�

���



�� Current Supplies to HEC Circuit Boards via Sig�

nal Feedthroughs �Release of �������	

Fifteen di�erent current supplies are required for the HEC circuit boards� The current is
supplied via the signal feedthroughs on modi�ed vacuum striplines which normally operate
with one end in the liquid argon cryostat at �� K and the other end on the outside of
the cryostat vacuum vessel at ambient �
�� K� temperature� During test procedures
however� the striplines must operate with both ends at ambient temperature� In the
latter scenario the current required rises by ���� and it is this mode of operation which
�xes the maximum current supply requirements�

The calculations on the temperature rise in the feedthrough vacuum striplines due
to ohmic heating have been updated� Two new Finite Element Analysis models have been
used to produce the results�

The �rst model� shown in Figure ��� is of a single current supply trace plus ground
trace separated by an electrically insulating kapton layer� Note that the current supply
trace width is double the normal 	�� �m wide signal trace� and that both current supply
and ground traces are double the normal 
� �m copper thickness� Note also that the
�common� ground trace is NOT used for the current return � a second trace is required for
the return path� Figures � and �� refer to the normal �ends at 
�� K and �� K� operating
conditions� Figure � shows the temperature of a trace� as a function of distance from
the ambient temperature end of the trace� for several current values� Figure �� shows
the potential di�erence across a trace as a function of current� Similar curves for the
conditions where both ends of the trace are at 
�� K are shown in Figures �� and ���

In the second model� shown in Figure ��� the two halves of a pair of adjacent traces
are connected by the kapton substrate� The kapton� while electrically insulating the two
traces� connects them quite strongly by thermal conduction� The temperature produced
by ohmic heating of a trace is signi�cantly modi�ed by the temperature of adjacent traces�
the e�ect is shown in Figures �� and �	� The solid curves are the temperature pro�les
of single traces as a function of distance from the ambient temperature end of the traces�
one carrying 
�� mA the other �� mA� The dashed curves between the solid curves� show
the temperature of both traces �they are the same to within a degree or so� when they
are adjacent to each other� Finally� Figure �
 shows the maximum temperature versus
current for the most demanding situation� where the ends of the stripline are both at
ambient temperature� The solid curve shows the maximum temperature as a function
of current for an isolated trace� The dashed curve shows the maximum temperature the
same trace would have if it were adjacent to a trace carrying one half of the current shown
on the abscissa� The �stars� are placed at the �fteen required current supply values at the


� K temperature level� the latter temperature is the maximum operating temperature
felt acceptable� If the maximum current allowed in any trace were �xed at 
�� mA� eleven
of the current supplies could be delivered on single traces� one requiring 
� mA would
require two parallel traces and the remaining three supplies would be delivered on three
parallel traces� In the latter scenario the striplines would always operate below 

� K�
even if one of the parallel traces for any of the heavier current supplies was broken� Of the

�� traces available for power supplies for each quadrant of the HEC� the above scheme

���



would use 
�	 traces per quadrant�

���



Figure ��� Finite element analysis model of a vacuum stripline to be used for low voltage
distribution to the HEC� showing one signal trace and one ground trace separated by a
kapton layer�

���



Figure �� Temperature of a vacuum stripline trace �for operating conditions� as a function
of distance from the ambient temperature end of the trace� for several current values� The
potential drop across the trace is also shown�

���



Figure ��� Potential di�erence across a vacuum stripline trace �for operating conditions�
as a function of distance from the ambient temperature end of a trace� for several current
values�

��	



Figure ��� Temperature of a vacuum stripline trace �for warm conditions� as a function of
distance from the ambient temperature end of the trace� for several current values� The
potential drop across the trace is also shown�

��




Figure ��� Potential di�erence across a vacuum stripline trace �for warm conditions� as
a function of distance from the ambient temperature end of a trace� for several current
values�

���



Figure ��� Finite element analysis model of a vacuum stripline to be used for low voltage
distribution to the HEC� showing two halves of a pair of adjacent traces connected by the
kapton substrate�

���



Figure ��� Temperature of a vacuum stripline trace �for operating conditions� as a function
of distance from the ambient temperature end of the trace� The solid curves show the
case of a 
�� mA trace and of a �� mA trace� The dashed curve shows the temperature
of both traces if they are adjacent to each other�

��



Figure �	� Temperature of a vacuum stripline trace �for warm conditions� as a function
of distance from the ambient temperature end of the trace� The solid curves show the
case of a 
�� mA trace and of a �� mA trace� The dashed curve shows the temperature
of both traces if they are adjacent to each other�

���



Figure �
� Maximum vacuum stripline trace temperature �for warm conditions� as a
function of trace current� See text�

���



�� Preliminary Results of the FEA on the Ambient

Flange �Release of ������	

We present here a �preview� of the results of the FEA on the ambient �ange�
Figure �� shows an element plot of the model of the ambient �ange� 	
 mm thick�

with pin carrier weld prep groove as before plus � mm deep�  mm wide groove for the
weld prep for joining the seal ring� The seal ring has a similar groove� The thickness
of the material at the weld prep rim is ���� mm� Figure �� shows the stress in the
seal ring for atmospheric load only� Figure � shows the stress in the ambient �ange for
atmospheric load only� Figure �� shows the stress at the junction of the �ange and seal
ring for atmospheric load plus 
�� bar internal pressure�

The �ange thickness and the weld prep thickness were varied to see how the results
were a�ected� The stress plots were similar to the above �gures with changes of stress
magnitude only� The results for various cases are shown in Table �

case
no�

�ange
thickness

weld prep
thickness

internal
pressure
�over atm
load�

�ange
de�ection

maximum
�ange�
seal ring
stress

�mm� �mm� �bar� ��m� �MPa�
� 	
 ���� � � ��
	 	
 ���� 
�� �� 	��

 	� ���� 
�� �� ���
� 	� ���� 
�� �	 ���
� 	� ��	� 
�� �� ���
 	� ���� 
�� �� ��

Table � Ambient �ange de�ections and maximum �Von Mises� stress in the �ange�
seal ring region under atmospheric load and the shown internal pressure� for two �ange
thicknesses and � di�erent seal ring weld prep ring thickness�

The 
�� bar internal pressure is not the correct pressure to use� The test pressure for
the endcap feedthroughs given in �The load cases for cryostat and feedthrough� ATLAS
document was used instead� We believe we will be asked to use the one under �Exceptional
situations �E��E	�� of 
�	 bar plus a ��� bar allowance for the argon hydrostatic head�
for a total of 
�
 bar� Note that this is di�erent from a pressure of 	�� bar �plus perhaps
the ��� bar allowance for the argon hydrostatic head� which is the �Normal situation�
described under N� in the above document� This matter should be clari�ed with Pierre
Pailler�

We favour the ��	� mm thick weld prep which will probably leave a 	 mm high
weld prep to make a new weld if the original weld has to be ground o�� Making the
�ange thicker by  mm reduces de�ection and stress� more important� it will reduce the
de�ection caused by welding in the pin carriers� on balance� we would prefer the thicker
�ange �the ��	� inch plate required for manufacture is available��

���
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�� E�ect of Signal Currents in the Signal

Feedthrough Stripline �Release of �������	

The standard signal vacuum cable� which connects each pair of ��pin connectors in the
ambient �
�� K� and cold ��� K� �anges of the barrel and endcap signal feedthroughs�
is a �exible circuit stripline� The �exible circuit is a sandwich of 
� micron thick kapton
between two layers of 
� micron thick copper� Each pin in the feedthrough is connected
to a copper trace 	�� micron wide etched from one of the copper layers and is opposite a
��� micron wide ground trace etched from the other copper layer� see Figure �		� Such
an arrangement provides the correct impedance for the signal lines�

The ANSYS �nite element code has been used to investigate the temperature and
power dissipation e�ects when signal currents are passed through the striplines� For the
purpose of this investigation� the stripline length was taken to be 
�� mm� the values
for the electrical and thermal conductivities of the copper were made temperature de�
pendant� but the thermal conductivity of the kapton was �xed at 
 Wm�K� The kapton
is assumed to provide perfect electrical insulation but it is interesting to note that the
signal and ground trace pairs are in very close thermal contact� The thermal contact
between adjacent signal and ground traces is su�cient to markedly modify heat �ow in
the stripline�

For the �rst part of the investigation� it is assumed that adjacent lines carry similar
currents so that a single signal�ground pair can be treated in isolation� Two operational
regimes require investigation� The normal situation is with one end of the stripline at
ambient �assumed 
�� K� and the other end at or near liquid argon temperature ��� K��
The other �test� situation is where the cryostat is not cold and both ends of the stripline
are at 
�� K� The temperature as a function of position along the stripline �measured
from the ambient �ange� is shown in Figures �	
 and �	� for the �normal� and �test�
situations respectively� The maximum temperature created in a stripline as a function of
current �owing is shown in Figure �	�� The potential di�erence produced between the
ends of the signal trace as a function of signal current is shown in Figure �	� The heat
�ow to the cold and ambient �anges as a function of signal trace current is shown for the
normal �
�� K��� K� situation in Figure �	�� The ground return current is considered
su�ciently widely distributed to cause negligible heating e�ects� As the signal current
grows� the temperature pro�le along the signal trace is modi�ed� the temperature gradient
passes through zero at the 
�� K end� causing a fraction of the resistive heating to begin
�owing to the ambient �ange� In the �test� situation half the resistive heat �ows to each
�ange�

The second part of the investigation concerns the e�ect on the maximum tempera�
ture in a signal trace carrying a current� when it is among other traces carrying small or
negligible currents� An analysis was made of a signal trace carrying a current of ��� mA
with three neighbouring traces on either side of the signal trace carrying no current�
The ends of all traces were held at 
�� K� The half�model �using the plane of symmetry
through the current carrying trace� is shown in Figure �	�� Also shown in Figure �	� are
the maximum temperatures in the traces and the percentage of the resistive heat from the
current carrying trace� which is carried by each of the neighbouring traces� It is evident

�	�



that neighbouring traces are in good thermal contact and a single trace could carry 
 or
� times the current one might specify for an isolated trace� A corollary to the latter is
that a current overload in one trace could damage other traces on the same stripline�

�	�



� Ambient Flange Study �Release of �������	

Modi�cations to the ambient �ange model continued from the models of section �� through
the models of section � to the current model� with atmospheric and 
�
 bar reverse
pressure loads�

This model now has the � mm deep �ange weld prep for attaching the seal ring
to the �ange �although only ��� mm wide rather than the  mm shown on the latest
drawings� and the  mm wide by 	�� mm deep weld groove to facilitate welding of the
pin carriers into the �ange� The weld lips for the seal ring��ange weld are both ��	� mm
thick� The weld lips for the pin carrier��ange weld are both ��� mm thick �instead of the
currently envisaged ���� mm thick�� The width of hole for � row pin carrier is � mm �cf�
latest drawing ���� mm�� The width of hole for � row pin Carrier is �
��� mm �cf� latest
drawing �
� mm�� The length of the hole for both pin carriers is ����
 mm �cf� latest
drawing ������ mm�� The �ange is 	��� mm thick� and the holes for the pin carriers have
been moved to leave ��� mm thick �cross webs� in the �ange�

Subsequently� the weld lips for the pin carrier��ange weld were both corrected to
the design thickness of ���� mm�

Figures ��� and �� show and exploded view of the ambient �ange� the pin carriers
and the seal ring� while Figure �� shows the corresponding element plot� A view of
the pin carriers in the ambient �ange is shown in Figure ��� while the whole assembly
is shown in Figure ���� The �Von Mises� stresses under atmospheric load and 
�
 bar
reverse pressure are shown in Figures ��� �view of the atmospheric side�� ��� �view of
the vacuum side�� ��	 �details of the pin carriers�� ��
 �details of the ambient �ange��
and ��� �details of the seal ring��
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�� Signal Feedthrough PRR � Calculations and FEA

� Mechanical Aspects �Release of �����	

���� General

Investigation of the various parts of the signal feedthrough assembly have been carried
out using the Finite Element Analysis �FEA� code ANSYS �� The structures examined
have a common plane of symmetry which enables the analyses to be carried out using
one half of the structure� Symmetry constraints are applied on the plane of symmetry�
motion parallel to the plane of symmetry is prevented by additional constraints applied
as required�

In the following descriptions the term �stress� is the Von Mises stress� and SI units
are used throughout� De�ections in models are exaggerated to enable them to be seen�

���� Ambient Flange

An exploded view of the ambient �ange assembly is shown in Figure ���� The four pin
carriers are welded into the �ange on the vacuum side of the �ange� and the �ange is
welded to the seal ring on the atmosphere side of the �ange� not shown in the �gure is
the stainless steel bellows which will be already welded �on the vacuum side� to the seal
ring by the bellows manufacturer�

During normal operation� atmospheric pressure will exist on one side of the �ange
and vacuum on the other� It is possible� in the event of a vacuum failure in the calorimeter�
that the ambient �ange could be exposed to a pressure rise in the vacuum space of 
�
 bar ��
An FEA of the latter situation has been carried out using the model shown in Figure ���
Motion perpendicular to the plane of the �ange is prevented by constraints on the seal ring
surface where it contacts the cryostat and bolt ring� motion parallel to the symmetry plane
is prevented by a single node constraint� Figure ��� is an overview of the de�ection of
the assembly under the above�mentioned pressure load� as seen from the normal vacuum
side� the maximum of �� microns occurring at the �ange centre� An overview of the
stress in the �ange is shown in Figure ���� Generally the stress is low� with regions of
higher stress occurring at the �ange�seal ring weld� where the corners of the pin carriers
approach the �ange periphery� and also in the corner regions of the �ange�pin carrier
welds near the centre of the �ange� These higher stress regions are very localized and are
shown in close�up views in Figures ��� and ���� Simple hand calculations of the stress in
the seal ring��ange weld yields an average stress of � MPa� this value lies between the
minimum and maximum values of �� MPa and 
� MPa from the FEA� which includes the
discontinuity stresses from the �ange distortion� The sensitive region of the feedthrough
is in the pin carrier �web� which houses the glass or ceramic seals to the signal pins� The
stress levels in the web are shown in Figure ��� to be less than � MPa�

No FEA was carried out on the bolt ring and bolts� A hand calculation of the load to
bring the bolts to their yield stress was only ��� of the load produced by the exceptional

�
 bar pressure loading�

�ANSYS v��� Swanson Analysis Systems Inc��Houston�PA�USA
�LAr Cryostats� ATLAS Project Document No� ATL�CERN�A�CERN�����

�
�



Heating resistors are attached to the ambient �ange to prevent condensation occur�
ring� particularly near the signal pins� due to the heat leak from the ambient �ange to
the cold �ange via the signal striplines� An FEA of this situation was performed and
the resulting temperature contours on the ambient �ange are shown in Figure ��	� The
resistors are simulated by the �xed temperature regions of 
�� K� the seal ring is held
at 
�� K where it touches the cryostat or bolt ring� A total of ��� W �ows out of the
resistors� ��� W to the seal ring and the remaining �� W to the signal pins� Heat lost
by convection to the air is not included� nor is the heat supplied to the signal pins by
the warm cables� the latter e�ect might marginally reduce the signal pin temperature
drop calculated here� The stress produced by the temperature �elds above were maxi�
mum ��� MPa and �	� MPa� at the �ange�pin carrier corners and �ange�seal ring weld
respectively� These stresses increased to 	
� MPa and ��� MPa when the 
�
 bar pressure
fault load was added�

���� Cold Flange

The FEA model of the Cold Flange is shown in Figure ��
� Two weld preparation �lips�
appear on the periphery of the �ange� one to weld the �ange to the bellows and the other
to weld to the �funnel� � the latter connects the feedthrough to the cryostat via a bi�metal
junction� Part of the Funnel is included in this FEA to investigate the cold �ange�funnel
weld� Motion perpendicular to the plane of the �ange is prevented by constraints on the
funnel edge remote from the �ange�

Under normal operating conditions� the bellows side of the cold �ange is under
vacuum and the other side at a maximum pressure of 	�� bar� The gas test pressure of

�� bar induces the most stressful condition however� and was the pressure used for the
calculations� The maximum de�ection of the �ange due to the 
�� bar pressure load is
shown in Figure ��� to be � microns� An overview of the stress in the cold �ange� seen
from the liquid argon side� due to the test pressure load is shown in Figure ���� The
maximum stress of ��� MPa is a localized stress in the corner of the weld region of the
pin carrier� Stress in the �ange alone is shown in Figure �� to be generally low� with
the higher stresses in the region where the corners of the pin carriers are welded to the
�ange� As in the ambient �ange these high stress regions are very localized� The stress in
the funnel�cold �ange weld is maximum �� MPa� where the corners of the pin carriers
approach the �ange periphery� These regions are visible in Figure ���� which shows the
section of funnel abutting the cold �ange�

The stresses in the sensitive web region of the pin carriers are shown in Figure ���
to be below �� MPa�

Simple hand calculation of the stress in funnel�cold �ange weld gives a value of
�� MPa� The FEA minimum and maximum stresses for this region are 	 MPa and
� MPa and Figure ��� shows the very marked concentration of stress at the locations
where the pin carrier corners are close to the �ange periphery�

�
�



���� Funnel

The FEA model of the funnel and bi�metallic joint is shown in Figure ���� The part
coloured red is aluminum� the rest is stainless steel� The open end of the aluminum
section of the bi�metal joint� which connects the feedthrough assembly to the cryostat�
was restrained from lateral and vertical motion� A force of �
�� Newtons was applied
to the open end of of the funnel larger diameter cylinder� simulating the force on the
funnel due to the internal pressure of 
�� bar� A force of �� Newtons was applied at the
same location in a lateral direction� simulating the force required to displace the bellows
laterally by �� mm� this displacement occurring due to contraction of the barrel cryostat
on cooling to liquid argon temperature� These forces are shown as red arrows in the
latter �gure� The maximum stress of ��� MPa occurs at the funnel plate�smaller cylinder
junction� Figure �	�� The maximum stress ��� MPa� in the transition joint region occurs
near the weld at the lower edge of the smaller funnel cylinder� Figure �	�� The stress in
the bi�metal union is low� �  MPa�
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�� Signal Feedthrough PRR � Calculations and FEA

� Electrical Aspects �Release of ����
�	

���� Signal Feedthrough Vacuum Cable

The signal cable which connects each pair of ��pin connectors in the ambient �
�� K�
and cold ��� K� �anges of the barrel and endcap signal feedthroughs is a �exible circuit
stripline� The �exible circuit is a sandwich of 
� micron thick kapton between two layers
of 
� micron thick copper� Each pin in the feedthrough is connected to a copper trace
	�� micron wide etched from one of the copper layers and is opposite a ��� micron wide
ground trace etched from the other copper layer� see Figure �		� Such an arrangement
provides the correct impedance for the signal lines�

FEA has been used to investigate the temperature and power dissipation e�ects
when signal currents are passed through the striplines� For the purpose of this investi�
gation� the stripline length was taken to be 
�� mm� the values for the electrical and
thermal conductivities of the copper were made temperature dependant� but the ther�
mal conductivity of the kapton was �xed at 
 Wm�K� The kapton is assumed to provide
perfect electrical insulation� but note that the signal and ground trace pairs are in very
close thermal contact� The thermal contact between adjacent signal and ground traces is
su�cient to markedly modify heat �ow in the stripline�

For the �rst part of the investigation� it is assumed that adjacent lines carry similar
currents so that a single signal�ground pair can be treated in isolation� Two operational
regimes were investigated� The �normal� situation is with one end of the stripline at
ambient �assumed 
�� K� and the other end at or near liquid argon temperature ��� K��
the other �test� situation is where the cryostat is not cold and both ends of the stripline
are at 
�� K� The temperature as a function position along the stripline �measured from
the ambient �ange� is shown in Figures �	
 and �	� for the �normal� and �test� situations
respectively� The maximum temperature created in a stripline as a function of current
�owing is shown in Figure �	�� The potential di�erence produced between the ends of
the signal trace as a function of signal current is shown in Figure �	� The heat �ow to
the cold and ambient �anges as a function of signal trace current is shown for the normal
�
�� K��� K� situation in Figure �	�� The ground return current is considered su�ciently
widely distributed to cause negligible heating e�ects� As the signal current grows� the
temperature pro�le along the signal trace is modi�ed� the temperature gradient passes
through zero at the 
�� K end� causing a fraction of the resistive heating to begin �owing
to the ambient �ange� In the �test� situation half the resistive heat �ows to each �ange�

The second part of the investigation concerns the e�ect on the maximum tempera�
ture in a signal trace carrying a current� when it is among other traces carrying small or
negligible currents� An analysis was made of a signal trace carrying a current of ��� mA
with three neighbouring traces on either side of the signal trace carrying no current�
The ends of all traces were held at 
�� K� The half�model �using the plane of symmetry
through the current carrying trace� is shown in Figure �	�� Also shown in Figure �	� are
the maximum temperatures in the traces and the percentage of the resistive heat from the
current carrying trace� which is carried by each of the neighbouring traces� It is evident
that neighbouring traces are in good thermal contact and a single trace could carry 
 or

���



� times the current one might specify for an isolated trace� A corollary to the latter is
that a current overload in one trace could damage other traces on the same stripline�

���� Signal Feedthrough Low Voltage Vacuum Cable

Work to be done later in the year�

���
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Figure �		� Finite element analysis model of one signal and return trace of the vacuum
stripline� Dimensions in millimetres�
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Figure �	
� Temperature of vacuum stripline as a function of the distance from the
ambient �ange for several current values� Normal situation� the ambient �ange is held at

�� K while the cold �ange is held at �� K�

���



Figure �	�� Temperature of vacuum stripline as a function of the distance from the
ambient �ange for several current values� Test situation� the ambient �ange and the cold
�ange are held at 
�� K�

���



Figure �	�� Maximum temperature of vacuum stripline as a function of the current for
both the normal and test situations�

���



Figure �	� Potential di�erence between the ends of the vacuum stripline as a function
of the current for both the normal and test situations�

��



Figure �	�� Heat �ow to the cold and ambient �anges from the vacuum stripline as a
function of the vacuum stripline signal trace current the normal �
�� K��� K� situation�
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�� Signal Feedthrough PRR � Calculations and FEA

� Mechanical Aspects Update on Coldbox �Fun�

nel	 �Release of �������	

���� Coldbox

The FEA model of the Coldbox and bi�metallic joint is shown in Figure �	�� The part
coloured red is aluminum� the rest is stainless steel� The open end of the aluminum
section of the bi�metal joint� which connects the feedthrough assembly to the cryostat� was
restrained from lateral and vertical motion� The larger diameter open end of the stainless
steel section was constrained to remain circular� simulating the constraint applied by the
joint to the cold �ange at this location� A force of �
�� Newtons was applied at the latter
location� simulating the force on the Coldbox due to the internal pressure of 
�� bar� A
force of �� Newtons was applied at the same location in a lateral direction� simulating
the force required to displace the bellows laterally by �� mm� this displacement occurring
due to contraction of the cryostat on cooling to liquid argon temperature� These forces
are shown as red arrows in the latter �gure� The maximum stress of ��� MPa occurs at
the Coldbox plate�smaller cylinder junction� Figure �
�� The maximum stress �
 MPa�
in the transition joint region occurs near the weld at the lower edge of the smaller Coldbox
cylinder� Figure �
�� The stress in the bi�metal union is low� � � MPa� The tooling holes
in the �ange were simulated by removing elements in the �ange� leaving rectangular holes
of approximately twice the cross section and similar depth as the ��� mm diameter times
�� mm deep tooling holes� the introduction of the holes had very little e�ect� Figure �
	�
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�� Signal Feedthrough PRR � Calculations and FEA

� Electrical Aspects Update on Low Voltage Vac�

uum Cables �Release of �������	

Current supplies to the HEC cold electronics are carried on special vacuum cables located
in four of the thirty cable positions in four of the signal feedthroughs per endcap� For
the purpose of this study it is assumed they occupy the two outermost positions in each
of the seven�row pin carriers� Heat �ows through these cables from the ambient �ange
end to the cold �ange end� which is assumed to be at liquid argon temperature� The heat
�ow for the proposed current supply cables has been calculated in HEC�note��� and was
used in an FEA calculation to estimate the temperature �elds which would occur at the
ambient �ange� It is assumed that the heating resistors� which are provided to prevent
condensation occurring� hold the temperature at the resistor locations at 
�� K and that
the seal ring is held at 
�� K where it touches the cryostat or bolt ring� Figure �


shows the resulting temperature �eld in the ambient �ange with the region near the
current supply cables well below the expected dew point� Some heat will be supplied by
convection and conduction from the warm cables but the temperatures are unlikely to
be changed by more than a few degrees� A solution being considered is to add electrical
heaters �about 	 watts each� to the current supply cables� adjacent to the plugs connecting
them to the ambient �ange� thereby o�setting the heat drain close to the point of origin�
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