On The Geometry of the EMEC Readout Channels

15 August 2003

- Local EMEC coordinate system
- Readout channel geometry parameters
- Volumes and geometrical centers

Michel Lefebvre University of Victoria Physics and Astronomy

The ideal (pointing) ATLAS coordinate system

- The ρ, θ, φ and η quantities for a point in the ideal (pointing) ATLAS coordinate system are defined in the usual way.
 - Using a cylindrical coordinate system, we obtain the following relations:

M. Lefebvre, 15 August 2003

EMEC readout channel geometry

- For the purpose of volume and geometrical center calculation, the accordion nature of the readout channels is not considered
 - Three types of readout channels are considered
 - Presampler channels (EMEC layer 0)
 - All other channels, except the truncated channels in layer 2
 - The truncated channels in layer 2 4

EMEC readout channel geometry parameters

- For the beam test analysis, the EMEC readout channel geometry parameters are kept in a file, available from http://particle.phys.uvic.ca/~web-atlas/atlas/hec-emec/geometry/
- It contains EMEC readout channel "median" coordinates in the ideal (pointing) ATLAS coordinate system:

 $\overline{\eta}$, $\Delta \eta$ $\overline{\phi}$, $\Delta \phi$ (in radians) \overline{z} , Δz (in cm)

These quantities do not in general denote the geometrical center of a readout channel. Rather, we have

$$\eta \in \left[\overline{\eta} - \frac{1}{2}\Delta\eta, \ \overline{\eta} + \frac{1}{2}\Delta\eta\right]$$
$$\varphi \in \left[\overline{\phi} - \frac{1}{2}\Delta\phi, \ \overline{\phi} + \frac{1}{2}\Delta\phi\right]$$
$$z \in \left[\overline{z} - \frac{1}{2}\Delta z, \ \overline{z} + \frac{1}{2}\Delta z\right]$$

M. Lefebvre, 15 August 2003

Presampler readout channels

- The volume of a presampler readout channel is considered to be bounded by two cylinders and by planes at fixed z
 - The Δz of each channel is set to 1cm in the geometry file
 - From elementary geometry we obtain

 $V = \frac{1}{2} \Delta \varphi \Delta z \left(\rho_2^2 - \rho_1^2 \right)$ $x_c = \rho_c \cos \overline{\varphi}$ $y_c = \rho_c \sin \overline{\varphi}$ $z_c = \overline{z}$ where $V \rho_c = \frac{2}{3} \Delta z \sin \left(\frac{1}{2} \Delta \varphi \right) \left(\rho_2^3 - \rho_1^3 \right)$ $\rho_1 = \frac{\overline{z}}{\sinh \left(\overline{\eta} + \frac{1}{2} \Delta \eta \right)} \quad \text{and} \quad \rho_2 = \frac{\overline{z}}{\sinh \left(\overline{\eta} - \frac{1}{2} \Delta \eta \right)}$

M. Lefebvre, 15 August 2003

Non-truncated EMEC readout channels

- The volume of a EMEC readout channel (layers 1 to 3, non-truncated) is considered to be bounded by two cones and by planes at fixed z
 - From elementary geometry we obtain

$$V = \frac{1}{6} \Delta \varphi \Delta z \left[\left(\rho_{a2}^2 + \rho_{a2} \rho_{b2} + \rho_{b2}^2 \right) - \left(\rho_{a1}^2 + \rho_{a1} \rho_{b1} + \rho_{b1}^2 \right) \right]$$

$$x_c = \rho_c \cos \overline{\varphi}$$

$$y_c = \rho_c \sin \overline{\varphi}$$

$$z_c$$

$$\rho_{a2}$$

$$\rho_{b2}$$

where

$$V\rho_{c} = \frac{1}{6}\Delta z \sin\left(\frac{1}{2}\Delta\phi\right) \left[\left(\rho_{a2}^{2} + \rho_{b2}^{2}\right) \left(\rho_{a2} + \rho_{b2}\right) - \left(\rho_{a1}^{2} + \rho_{b1}^{2}\right) \left(\rho_{a1} + \rho_{b1}\right) \right]$$
$$Vz_{c} = \frac{1}{4}\overline{z}\Delta\phi\Delta z \left[\left(\rho_{a2}^{2} + \rho_{b2}^{2}\right) - \left(\rho_{a1}^{2} + \rho_{b1}^{2}\right) \right]$$

M. Lefebvre, 15 August 2003

On the geometry of the EMEC readout channels

 ho_{b1}

Non-truncated EMEC readout channels (continued)

M. Lefebvre, 15 August 2003

Truncated EMEC readout channels

These readout channels are in layer 2, and only to the three lowest pseudorapidity bins in 1.400 < |η| < 1.475
 Their volume is bounded by two cones, by a z plane (at *z*=*a*) and by a cylinder (ρ_m)

M. Lefebvre, 15 August 2003

Truncated EMEC readout channels (continued) where $\overline{z} = \frac{1}{2} \Delta z$

$$\rho_{a1} = \frac{\overline{z} - \frac{1}{2}\Delta z}{\sinh\left(\overline{\eta} + \frac{1}{2}\Delta\eta\right)} \qquad \rho_{a2} = \frac{\overline{z} - \frac{1}{2}\Delta z}{\sinh\left(\overline{\eta} - \frac{1}{2}\Delta\eta\right)} > \rho_{a1}$$

• From elementary geometry we obtain

$$V = \frac{1}{6} \Delta \phi \Delta z_1 \left(\rho_{a2}^2 + \rho_{a2} \rho_m + \rho_m^2 \right) + \frac{1}{2} \Delta \phi \Delta z_2 \rho_m^2$$

$$-\frac{1}{6} \Delta \phi \Delta z \left(\rho_{a1}^2 + \rho_{a1} \rho_m + \rho_m^2 \right)$$

$$x_c = \rho_c \cos \overline{\phi}$$

$$y_c = \rho_c \sin \overline{\phi}$$

$$z_c$$
where

$$V\rho_{\rm c} = \frac{1}{6}\Delta z_{\rm l}\sin\left(\frac{1}{2}\Delta\phi\right)\left(\rho_{\rm a2}^{2} + \rho_{\rm m}^{2}\right)\left(\rho_{\rm a2} + \rho_{\rm m}\right) + \frac{2}{3}\rho_{\rm m}^{3}\Delta z_{\rm 2}\sin\left(\frac{1}{2}\Delta\phi\right)$$
$$-\frac{1}{6}\Delta z\sin\left(\frac{1}{2}\Delta\phi\right)\left(\rho_{\rm a1}^{2} + \rho_{\rm m}^{2}\right)\left(\rho_{\rm a1} + \rho_{\rm m}\right)$$
$$Vz_{\rm c} = \frac{1}{4}\overline{z}_{\rm l}\Delta\phi\Delta z_{\rm l}\left(\rho_{\rm a2}^{2} + \rho_{\rm m}^{2}\right) + \frac{1}{2}\overline{z}_{\rm 2}\Delta z_{\rm 2}\rho_{\rm m}^{2} - \frac{1}{4}\overline{z}\Delta\phi\Delta z\left(\rho_{\rm a1}^{2} + \rho_{\rm m}^{2}\right)$$

M. Lefebvre, 15 August 2003

Readout channel volume

The following readout channel volumes are obtained

M. Lefebvre, 15 August 2003

Readout channel geometrical center

The median center can be close z(median)-z(geo) (cm) to a cm away from the y (cm) EMEC Laver 1 0292 geometrical center, the 0.0284 difference is (almost completely) 20 0.029 -d.028 10 F in z d.029 $\left|\overline{\eta} - \eta_{\rm c}\right| < 0.0019$ ol d.0292 No difference -10 in z for layer 0 $\overline{\phi} = \phi_c$ (presampler) -20 $\left|\overline{z} - z_{c}\right| < 0.8 \text{ cm}$ since all 60 channels have x (cm) a cylindrical z(median)-z(geo) (cm) z(median)-z(geo) (cm) shape (m) ⁵⁰ Å 40 (m) y (cm) 50 E EMEC Layer 2 EMEC Layer 3 30 30 20 20 10 10 F 03 0[-10 -d.04 -10 -20 -20 -30 -40 -30 -60 -40 -20 n 20 40 60 40 -20 20 60 x (cm) x (cm)

M. Lefebvre, 15 August 2003