On The Geometry of the EMEC Readout Channels

15 August 2003

- Local EMEC coordinate system
- Readout channel geometry parameters
- Volumes and geometrical centers

University of Victoria
Physics and Astronomy

The ideal (pointing) ATLAS coordinate system

- The ρ, θ, φ and η quantities for a point in the ideal (pointing) ATLAS coordinate system are defined in the usual way.
- Using a cylindrical coordinate system, we obtain the following relations:

$$
\begin{aligned}
& x=\rho \cos \varphi \\
& y=\rho \sin \varphi \\
& z=\rho \cot \theta \\
& \rho^{2}=x^{2}+y^{2} \\
& \cos \theta=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& \tan \varphi=\frac{y}{x}
\end{aligned}
$$

$\eta \equiv-\ln \tan \frac{1}{2} \theta$
$\theta=2 \arctan e^{-\eta}$
$\sinh \eta=\cot \theta$
$\cosh \eta=\operatorname{cosec} \theta$
$\tanh \eta=\cos \theta$

EMEC readout channel geometry

- For the purpose of volume and geometrical center calculation, the accordion nature of the readout channels is not considered
- Three types of readout channels are considered
- Presampler channels (EMEC layer 0)
- All other channels, except the truncated channels in layer 2
- The truncated channels in layer 2

EMEC readout channel geometry parameters

- For the beam test analysis, the EMEC readout channel geometry parameters are kept in a file, available from
http://particle.phys.uvic.ca/~web-atlas/atlas/hec-emec/geometry/
■ It contains EMEC readout channel "median" coordinates in the ideal (pointing) ATLAS coordinate system:

$$
\bar{\eta}, \Delta \eta \quad \bar{\varphi}, \Delta \varphi \text { (in radians) } \quad \bar{z}, \Delta z \text { (in cm) }
$$

- These quantities do not in general denote the geometrical center of a readout channel. Rather, we have

$$
\begin{aligned}
& \eta \in\left[\bar{\eta}-\frac{1}{2} \Delta \eta, \bar{\eta}+\frac{1}{2} \Delta \eta\right] \\
& \varphi \in\left[\bar{\varphi}-\frac{1}{2} \Delta \varphi, \bar{\varphi}+\frac{1}{2} \Delta \varphi\right] \\
& z \in\left[\bar{z}-\frac{1}{2} \Delta z, \bar{z}+\frac{1}{2} \Delta z\right]
\end{aligned}
$$

Presampler readout channels

■ The volume of a presampler readout channel is considered to be bounded by two cylinders and by planes at fixed z

- The Δz of each channel is set to 1 cm in the geometry file
- From elementary geometry we obtain

$$
\begin{aligned}
& V=\frac{1}{2} \Delta \varphi \Delta z\left(\rho_{2}^{2}-\rho_{1}^{2}\right) \\
& x_{\mathrm{c}}=\rho_{\mathrm{c}} \cos \bar{\varphi} \\
& y_{\mathrm{c}}=\rho_{\mathrm{c}} \sin \bar{\varphi} \\
& z_{\mathrm{c}}=\bar{z} \\
& \quad \text { where } \\
& V \rho_{\mathrm{c}}=\frac{2}{3} \Delta z \sin \left(\frac{1}{2} \Delta \varphi\right)\left(\rho_{2}^{3}-\rho_{1}^{3}\right) \\
& \rho_{1}=\frac{\bar{z}}{\sinh \left(\bar{\eta}+\frac{1}{2} \Delta \eta\right)} \quad \text { and } \quad \rho_{2}=\frac{\bar{z}}{\sinh \left(\bar{\eta}-\frac{1}{2} \Delta \eta\right)}
\end{aligned}
$$

Non-truncated EMEC readout channels

■ The volume of a EMEC readout channel (layers 1 to 3, non-truncated) is considered to be bounded by two cones and by planes at fixed z

- From elementary geometry we obtain

$$
\begin{aligned}
& V=\frac{1}{6} \Delta \varphi \Delta z\left[\left(\rho_{\mathrm{a} 2}^{2}+\rho_{\mathrm{a} 2} \rho_{\mathrm{b} 2}+\rho_{\mathrm{b} 2}^{2}\right)-\left(\rho_{\mathrm{a} 1}^{2}+\rho_{\mathrm{a} 1} \rho_{\mathrm{b} 1}+\rho_{\mathrm{b} 1}^{2}\right)\right] \\
& x_{\mathrm{c}}=\rho_{\mathrm{c}} \cos \bar{\varphi} \\
& y_{\mathrm{c}}=\rho_{\mathrm{c}} \sin \bar{\varphi} \\
& z_{\mathrm{c}}
\end{aligned}
$$

where

$$
\begin{aligned}
& V \rho_{\mathrm{c}}=\frac{1}{6} \Delta z \sin \left(\frac{1}{2} \Delta \varphi\right)\left[\left(\rho_{\mathrm{a} 2}^{2}+\rho_{\mathrm{b} 2}^{2}\right)\left(\rho_{\mathrm{a} 2}+\rho_{\mathrm{b} 2}\right)-\left(\rho_{\mathrm{a} 1}^{2}+\rho_{\mathrm{b} 1}^{2}\right)\left(\rho_{\mathrm{a} 1}+\rho_{\mathrm{b} 1}\right)\right] \\
& V z_{\mathrm{c}}=\frac{1}{4} \bar{z} \Delta \varphi \Delta z\left[\left(\rho_{\mathrm{a} 2}^{2}+\rho_{\mathrm{b} 2}^{2}\right)-\left(\rho_{\mathrm{a} 1}^{2}+\rho_{\mathrm{b} 1}^{2}\right)\right]
\end{aligned}
$$

Non-truncated EMEC readout channels (continued)

and where

$$
\begin{aligned}
& z=a \text { plane } \\
& \rho_{\mathrm{a} 1}=\frac{\bar{z}-\frac{1}{2} \Delta z}{\sinh \left(\bar{\eta}+\frac{1}{2} \Delta \eta\right)} \\
& \rho_{\mathrm{a} 2}=\frac{\bar{z}-\frac{1}{2} \Delta z}{\sinh \left(\bar{\eta}-\frac{1}{2} \Delta \eta\right)}
\end{aligned}
$$

$z=b$ plane

$$
\begin{aligned}
& \rho_{\mathrm{b} 1}=\frac{\bar{z}-\frac{1}{2} \Delta z}{\sinh \left(\bar{\eta}+\frac{1}{2} \Delta \eta\right)} \\
& \rho_{\mathrm{b} 2}=\frac{\bar{z}-\frac{1}{2} \Delta z}{\sinh \left(\bar{\eta}-\frac{1}{2} \Delta \eta\right)}
\end{aligned}
$$

Truncated EMEC readout channels

■ These readout channels are in layer 2, and only to the three lowest pseudorapidity bins in $1.400<|\eta|<1.475$

- Their volume is bounded by two cones, by a z plane (at $z=a$) and by a cylinder (ρ_{m})

Truncated EMEC readout channels (continued)

where

$$
\rho_{\mathrm{a} 1}=\frac{\bar{z}-\frac{1}{2} \Delta z}{\sinh \left(\bar{\eta}+\frac{1}{2} \Delta \eta\right)} \quad \rho_{\mathrm{a} 2}=\frac{\bar{z}-\frac{1}{2} \Delta z}{\sinh \left(\bar{\eta}-\frac{1}{2} \Delta \eta\right)}>\rho_{\mathrm{a} 1}
$$

- From elementary geometry we obtain

$$
\begin{aligned}
V= & \frac{1}{6} \Delta \varphi \Delta z_{1}\left(\rho_{\mathrm{a} 2}^{2}+\rho_{\mathrm{a} 2} \rho_{\mathrm{m}}+\rho_{\mathrm{m}}^{2}\right)+\frac{1}{2} \Delta \varphi \Delta z_{2} \rho_{\mathrm{m}}^{2} \\
& -\frac{1}{6} \Delta \varphi \Delta z\left(\rho_{\mathrm{a} 1}^{2}+\rho_{\mathrm{a} 1} \rho_{\mathrm{m}}+\rho_{\mathrm{m}}^{2}\right) \\
x_{\mathrm{c}}= & \rho_{\mathrm{c}} \cos \bar{\varphi} \\
y_{\mathrm{c}}= & \rho_{\mathrm{c}} \sin \bar{\varphi} \\
z_{\mathrm{c}} &
\end{aligned}
$$

$z=a$ plane

where

$$
\begin{aligned}
V \rho_{\mathrm{c}}= & \frac{1}{6} \Delta z_{1} \sin \left(\frac{1}{2} \Delta \varphi\right)\left(\rho_{\mathrm{a} 2}^{2}+\rho_{\mathrm{m}}^{2}\right)\left(\rho_{\mathrm{a} 2}+\rho_{\mathrm{m}}\right)+\frac{2}{3} \rho_{\mathrm{m}}^{3} \Delta z_{2} \sin \left(\frac{1}{2} \Delta \varphi\right) \\
& -\frac{1}{6} \Delta z \sin \left(\frac{1}{2} \Delta \varphi\right)\left(\rho_{\mathrm{a} 1}^{2}+\rho_{\mathrm{m}}^{2}\right)\left(\rho_{\mathrm{a} 1}+\rho_{\mathrm{m}}\right) \\
V z_{\mathrm{c}} & =\frac{1}{4} \bar{z}_{1} \Delta \varphi \Delta z_{1}\left(\rho_{\mathrm{a} 2}^{2}+\rho_{\mathrm{m}}^{2}\right)+\frac{1}{2} \bar{z}_{2} \Delta z_{2} \rho_{\mathrm{m}}^{2}-\frac{1}{4} \bar{z} \Delta \varphi \Delta z\left(\rho_{\mathrm{a} 1}^{2}+\rho_{\mathrm{m}}^{2}\right)
\end{aligned}
$$

Readout channel volume

■ The following readout channel volumes are obtained

Readout channel geometrical center

－The median center can be close to a cm away from the geometrical center，the difference is（almost completely） in z

No difference
in z for layer 0 （presampler）

$$
\bar{\varphi}=\varphi_{c}
$$ since all channels have

$$
\left|\bar{\eta}-\eta_{\mathrm{c}}\right|<0.0019
$$

$$
\left|\bar{z}-z_{\mathrm{c}}\right|<0.8 \mathrm{~cm}
$$ a cylindrical

 shape

