On The Geometry of the HEC Readout Channels

14 August 2003
■ Local HEC coordinate system

- Readout families

■ Readout channels
■ Volume and geometrical center

- Neighbors

University of Victoria Physics and Astronomy

The ideal (pointing) ATLAS coordinate system

- The ρ, θ, φ and η quantities for a point in the ideal (pointing) ATLAS coordinate system are defined in the usual way.
- Using a cylindrical coordinate system, we obtain the following relations:

$$
\begin{aligned}
& x=\rho \cos \varphi \\
& y=\rho \sin \varphi \\
& z=\rho \cot \theta \\
& \rho^{2}=x^{2}+y^{2} \\
& \cos \theta=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& \tan \varphi=\frac{y}{x}
\end{aligned}
$$

$\eta \equiv-\ln \tan \frac{1}{2} \theta$
$\theta=2 \arctan e^{-\eta}$
$\sinh \eta=\cot \theta$
$\cosh \eta=\operatorname{cosec} \theta$
$\tanh \eta=\cos \theta$

HEC module geometry in ρ-z plane at middle φ

not to scale!

HEC readout families俗
not to scale!

HEC readout layers (or depths) -正

HEC module geometry parameters

■ For the beam test analysis, the HEC module geometry parameters are kept in a file, available from
http://particle.phys.uvic.ca/~web-atlas/atlas/hec-emec/geometry/
■ It contains HEC readout channel "median" coordinates in the ideal (pointing) ATLAS coordinate system:

$$
\bar{\eta}, \Delta \eta \quad \bar{\varphi}, \Delta \varphi \text { (in radians) } \quad \bar{z}, \Delta z \text { (in cm) }
$$

- These quantities do not in general denote the geometrical center of a channel. Rather, we have

$$
\begin{aligned}
& \eta \in\left[\bar{\eta}-\frac{1}{2} \Delta \eta, \bar{\eta}+\frac{1}{2} \Delta \eta\right] \\
& \varphi \in\left[\bar{\varphi}-\frac{1}{2} \Delta \varphi, \bar{\varphi}+\frac{1}{2} \Delta \varphi\right] \\
& z \in\left[\bar{z}-\frac{1}{2} \Delta z, \bar{z}+\frac{1}{2} \Delta z\right]
\end{aligned}
$$

Readout families and readout channels

■ A readout channel is composed of either one or two readout families (denoted a and b in order of increasing z)
■ The z position of the middle of a family $\left(z_{F}\right)$ and the z width of a family $\left(\Delta z_{F}\right)$ are related to the readout channel parameters:

$$
\begin{aligned}
& z_{\mathrm{F}}=\left\{\begin{array}{ll}
\bar{z} & \text { for channels with one family } \\
\bar{z}-\frac{1}{4} \Delta z & \text { family a } \\
\bar{z}+\frac{1}{4} \Delta z & \text { family } \mathrm{b}
\end{array}\right. \text { for channels with two families } \\
& \Delta z_{\mathrm{F}}= \begin{cases}\Delta z & \text { for channels with one family } \\
\frac{1}{2} \Delta z & \text { for channels with two families }\end{cases}
\end{aligned}
$$

Pseudorapidity limits

■ In the HEC, the pseudorapidity limits of a readout family refer to the middle φ of a module and to the middle $z\left(z_{F}\right)$ of a family

- there are seven HEC readout families in ATLAS, 5 only in the 2002 combined beam test.
- Consider the following schematic (not to scale!) of a HEC family in the $\rho-\varphi$ plane;

$$
\begin{aligned}
& \rho_{1}=\frac{z_{F}}{\sinh \left(\bar{\eta}+\frac{1}{2} \Delta \eta\right)} \\
& \rho_{2}=\frac{z_{F}}{\sinh \left(\bar{\eta}-\frac{1}{2} \Delta \eta\right)}
\end{aligned}
$$

\qquad

$z=z_{\mathrm{F}}$ plane z_{F} corresponds to \bar{z} only for the $1^{\text {st }} \mathrm{HEC}$ readout layer!
middle φ of module

Readout family ρ limits

■ The ρ limits of a readout family refer to the middle φ of a module

$$
\begin{aligned}
& \rho_{1}= \begin{cases}37.20 \mathrm{~cm} & \text { family } 1 \text { at high } \eta \text { boundary } \\
47.50 \mathrm{~cm} & \text { families }>1 \text { at high } \eta \text { boundary } \\
\frac{z_{\mathrm{F}}}{\sinh \left(\bar{\eta}+\frac{1}{2} \Delta \eta\right)} & \text { other families }\end{cases} \\
& \rho_{2}= \begin{cases}203.00 \mathrm{~cm} & \text { families at low } \eta \text { boundary } \\
\frac{z_{\mathrm{F}}}{\sinh \left(\bar{\eta}-\frac{1}{2} \Delta \eta\right)} & \text { other families }\end{cases}
\end{aligned}
$$

middle φ of module

Readout family volume and geometrical center

■ First consider the $\Delta \varphi=2 \pi / 64$ channels ($\eta \leq 2.5$)

- From elementary geometry we obtain

$$
\begin{aligned}
V & =\frac{1}{2} \Delta z_{\mathrm{F}}\left(\rho_{2}^{2}-\rho_{1}^{2}\right) \tan \Delta \varphi \\
x_{\mathrm{c}} & =\rho_{\mathrm{c}} \cos \varphi_{\mathrm{c}} \\
y_{\mathrm{c}} & =\rho_{\mathrm{c}} \sin \varphi_{\mathrm{c}} \\
z_{\mathrm{c}} & =z_{\mathrm{F}} \\
& \text { where } \\
& \rho_{\mathrm{c}}=\frac{2}{3}\left(\frac{\rho_{1}^{2}+\rho_{1} \rho_{2}+\rho_{2}^{2}}{\rho_{1}+\rho_{2}}\right) \sec \Delta \varphi_{\mathrm{c}}
\end{aligned}
$$

$$
\varphi_{c}=\bar{\varphi} \pm\left(\Delta \varphi_{c}-\frac{1}{2} \Delta \varphi\right) \longrightarrow \begin{gathered}
\text { The } \pm \text { depends on }
\end{gathered}
$$

which side of the

$$
\text { module middle } \varphi
$$

plane the channel is

Readout family volume and geometrical center

■ Second consider the $\Delta \varphi=2 \pi / 32$ channels ($\eta \geq 2.5$)

- From the previous results we obtain

$$
\begin{aligned}
& V=\Delta z_{\mathrm{F}}\left(\rho_{2}^{2}-\rho_{1}^{2}\right) \tan \left(\frac{1}{2} \Delta \varphi\right) \\
& x_{\mathrm{c}}=\rho_{\mathrm{c}} \cos \varphi_{\mathrm{c}} \\
& y_{\mathrm{c}}=\rho_{\mathrm{c}} \sin \varphi_{\mathrm{c}} \\
& z_{\mathrm{c}}=z_{\mathrm{F}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \rho_{c}=\frac{2}{3}\left(\frac{\rho_{1}^{2}+\rho_{1} \rho_{2}+\rho_{2}^{2}}{\rho_{1}+\rho_{2}}\right) \\
& \varphi_{c}=\bar{\varphi}
\end{aligned}
$$

Readout channel volume and geometrical center

- In the case of readout channels with one family, we use the results obtained for that family
- In the case of readout channels with two families, we weigh each family by their volume
- From the previous results we obtain

$$
\begin{aligned}
& V=V_{\mathrm{a}}+V_{\mathrm{b}} \\
& \vec{r}_{\mathrm{c}}=\omega_{\mathrm{a}} \vec{r}_{\mathrm{a}}+\omega_{\mathrm{b}} \vec{r}_{\mathrm{b}}
\end{aligned}
$$

where

$$
\omega_{\mathrm{a}}=\frac{V_{\mathrm{a}}}{V} \quad \omega_{\mathrm{b}}=\frac{V_{\mathrm{b}}}{V}=1-\omega_{\mathrm{a}}
$$

Readout channel volume

■ The following readout channel volumes are obtained

2002 HEC-EMEC beam test configuration. The numbers refer to the channel numbers for this beam test

Readout channel geometrical center

- The median center can be a few cm away from the geometrical center, the difference is (almost completely) in z

$$
\left|\bar{\eta}-\eta_{\mathrm{c}}\right|<0.009 \quad\left|\bar{\varphi}-\varphi_{\mathrm{c}}\right|<0.0015 \quad\left|\bar{z}-z_{\mathrm{c}}\right|<3.7 \mathrm{~cm}
$$

No difference in z for layer 1 since all the channels are composed of only one family.
This is also the case for the lowest eta channels in layer 3

z(median)-z(geo) (cm)

2002 HEC-EMEC beam test configuration. The numbers refer to the channel numbers for this beam test

Readout channel neighbors

■ The pseudo-pointing nature of the HEC channels lead to peculiarities in the list of neighbors for a channel

- Consider three target channels (blue) and their touching neighbors (red)
Notice these are not touching neighbors, as would be obtained if only eta indices wereconsidered

2002 HEC-EMEC beam test configuration. The numbers refer to the channel numbers for this beam test

