Electromagnetic logitidinal shower development

Depth (in X_0) at which the shower has the maximum number of particles:

(e.g.: http://rkb.home.cern.ch/rkb/PH14pp/node58.html)

 $t_{max} \approx \ln (E / \epsilon) - C$ (with: $\epsilon \cong 550 \text{ MeV/Z}$ $c \cong 1 \text{ for electrons}$ ($Z_{Pb} = 82$))

Shower depth for 95% lognitudinal containment:

 $T_{95}[X_o] \approx t_{max} + 0.08 \cdot Z + 9.6$

Parametrization for average differential longitudinal energy deposit:

 $DE = k \cdot t^{(a-1)} \cdot e^{-bt} \cdot dt \qquad (with: k = E b^a / \Gamma(a))$

Integrate this up to some depth t' :

$$\mathsf{E}_{\mathsf{t}'} = \mathsf{E} \int_{0}^{\frac{\tau^{a-1}e^{-\tau}}{\Gamma(a)}} d\tau = \mathsf{E} \cdot \operatorname{GAMDIS}(\tau', \mathsf{a}) \quad (\text{with: } \tau = \mathsf{bt})$$

Differentiate DE and set to zero (for shower maximum):

 \Rightarrow t_{max} = (a-1) / b

Looked at nuples of different energies and additional X_0 in front.

Fit for a and b and see whether they follow a logarithmic energy dependence

Compare : $\tan x = (a-1)/b$ with tmax theory : $\tan x \approx \ln(E/\epsilon) - c$

Fit for a,b : All energies, all X_0 , for 5 possibilities of x0junk: (1.8, 1.9, 2.0, 2.1, 2.2) and then form the average over the results for a and b.

Depth of shower maximum

Data : tmax = (a-1)/b with a and b from fits as a function of energy

Theory : tmax \approx ln (E / ϵ) - c

Next on the list:

Working on making better use of the PS now

- •
- :
- i i
- •
- •