The 2nd part

LARG HEC TestBeam software in Athena framework

Oct. 12, 2001

CERN

Contact nkanaya@uvic.ca

hat we can do in the Athena Framework?

- he Athena Framework, one can reconstruct signal and produce a standard ntuple, ich is the same as the one produced by the hec_adc framework.
- d also, you can add your own code to LArHEC TB software, and get the togram/ntuple you want.
- the end of this tutorial, you should know
- How to execute LArHEC TB software
- About HEC TB software and data structure in Athena.
- How to add your own analysis code in LArHEC TB software

Contents

ction 1 : About LArHEC TestBeam software

ction 2 : How to execute LArHECTB packages

exercise 1 : produce a pedestal file

exercise 2 : produce a standard ntuple file

ction 3 : How to add your own code

exercise 3 : get time slices and produce a histogram.

Section 1

About LArHEC TestBeam Software in athena

LAr HEC TestBeam packages in athena

LArHECTBCnv

Convert TB data from EPIO format to TDS

- Read EPIO data
- Unpack bank
- Create a data object to be recorded in TDS
- Record it in TDS

LARHECTBEvent

TB data recorded in TDS by LArHECTBCnv

onsists of the **EVENT**-type pointer and member functions.

LArHECTBEvent.h

ablic :

inline int event_number() const { return p_event->header.eventNo; }
inline short tdc_count() const { return p_event->header.tdc_ch0; }
inline HECTrigger * trigger_status() const { return p_event->header.trig; }
inline RUNHEAD * run_header() const { return p_event->runheader; }
inline SLOWCONT * slow_control() const { return p_event->slowcontrol; }
inline EVENT * LArHECTB_event() const { return p_event; }
ivate :
EVENT * p_event;

Comments

RUNHEAD and SLOWCONT are usually included in the first event only.

Class Diagram in LARHECTBEvent

LArHECTBPed

Calculate pedestals and write them in an ascii file

p Algorithm : LArHECTBPedMaker.cxx

- produce pedestals and their rms for each cell.
- calculate mean and rms using all events in a given run.
- possibility to apply σ_{cut} in order to skip noisy channel in pedestal calculation.
- Done using the first *N* events.

inalize ()

ostream out ;

out $\ll \mu \ll \sigma \ll N_{used} \ll \mu_{cut} \ll \sigma_{cut} \ll endl;$

- Following variables can be changed by *jobOptions.txt*.
- The first time sample # to be used.
- The last time sample # to be used.
- The number of events used for cut condition
- The number of sigma for event selection
- File name
- Output format

 $\mu \ , \ \sigma \ , \ N \ , \ \mu_{
m cut} \ , \ \sigma_{
m cut}$ for each cell

About jobOptions.txt

jobOptions.txt	
tinclude "jobOptions_PedMaker.txt" Message Stream Ouput Level	
$MessageSvc.OutputLevel = 2: \bullet$	
$ApplicationMgr.EvtMax = 10: \longrightarrow$ Number of events processed	
jobOptions_PedMaker.txt	
<i>pplicationMgr.DLLs += { "StoreGate", "LArHECTBPed" , LArHECTBCnv", "LArBookkeeping" }; (</i> 1)	(1) Shared libraries used) mandatory
pplicationMgr.TopAlg += { "LArHECTBPedMaker/LArHECPed" },(2)	(2) Top Algorithm name(*.cxx)
pplicationMgr.ExtSvc += { "StoreGateSvc", "LArHECTBCnvSvc" , ArBookkeepingSvc" . "LArHECTBEventSelector/EventSelector" }: (3)	(3) Service names executed
SventPersistencySvc.CnvServices = { "LArHECTBCnvSvc" }; (4)	(4) Converter service name
ArHECPed.FirstSlice = 0;	(5) Properties in LArHECTBPed
ArHECPed.LastSlice = 0;	 the first slice used for pedestal calculation the last "
$ArHECPed.Nsigma = 3; \tag{5}$	 The number of sigma used for event selection
ArHECPed.Nevent = 500;	• The number of events used for μ_{cut} and σ_{cut}
ArHECPed.OutputFileName = "ped_r10053.dat" ;	• Output file name
SventSelector.RunNb = { "10053" }; Run number	LArBookkeepingSvc
	~nkanaya/maxidisk/uvic/data/run_10053.dat

LArHECTBAna

Reconstruct signal

ere are two TopAlgorithms and four subAlgorithms.

- Algorithm : LArTBSignalBuilder.cxx
 - \rightarrow reconstruct a signal
- o Algorithm
- LArReadGeometry.cxx
- LArPedestalSubtract.cxx
- LArDigitalFiltering.cxx
- LArCalibration.cxx

read geometry file
do pedestal subtraction
find signal peak and its time for given cell
convert adc to nA

LArHECTBAna (continue)

o Algorithm : LArTBStandardNtup.cxx

n header ntuple (ID = 100)

ble	contents
unno	run number
runpd	run period number
peame	beam energy
noevt	number of event
oarttype	article type (1= e , 2= μ , 3= π)
ctyox	cryostat position in x
abley	table position in y
oeakf	peak finding method (2=degital filtering)
eunit	units of energy (1 = energy)
cells_used	the number of cells used
oed_rms	run pedestal rms for each channel
eta	eta value for each channel
phi	phi value for each channel
Z	z value for each channel
С	adc channel number

• event ntuple (ID = 101)

variable	contents
hec_evetno	event number
hec_trig	tirgger flag array
hec_nchan	number of good channels
hec_signal (hec_nchan)	signal for each channel

• slow control ntuple (ID = 102)

variable	contents
hec_adc_used	number of used channels
hec_lartemp	liquid argon temperature
hec_press	pressure

About jobOptions.txt

LArHECTBAna_jobOptions_SignalBuilder.txt	→ LArHECTBAna_jobOptions.txt
ApplicationMgr.DLLs += { "StoreGate", "LArHECTBPed" , LArHECTBCnv","LArBookkeeping" , <u>"HbookCnv" }; (1)</u>	(1) For a histgram/ntuple mandatory
pplicationMgr.TopAlg += { "LArTBSignalBuilder/LArBuilder", (2)	(2) Top Algorithm name(*.cxx)
"LArTBStandardNtup/ LArNtup"};" pplicationMgr.ExtSvc += { "StoreGateSvc", "LArHECTBCnvSvc" ,	(3) subAlgorithm name(*.cxx)
ArBookkeepingSvc", "LArHECTBEventSelector/EventSelector" };	(4) input file name
<pre>EventPersistencySvc.CnvServices = { "LArHECTBCnvSvc" };</pre>	(5) for ntuple
EventSelector.RunNb = { "10053" };	(6) fill signal in unit of "nA"
ArBuilder.ProcessNames = { "LArReadGeometry/LArGeo", "LArPedestalSubtract/LArPed", "LArDigitalFiltering/LArDig", "LArCalibration/LArCal" };	
ArPed.PedestalFileName = "/ped_r10053.dat";(4)	
plicationMgr.HistogramPersistency="HBOOK"; TupleSvc.Output = { "FILE1 DATAFILE='hec_adc.ntp' OPT='NEW'"}; ArNtup.Energy_unit = "nA"; (6)	(5)

asks

- manage data stored at different places (HPSS, Castor).
- visualize and edit run information.
- ArBookkeeping based on mySQL
- veb interface available in http://larbookkeeping.in2p3.fr
- shifter interface
- user interface
- nterface to Athena available via
- LArBookkeepingSvc
- you only have to select run in jobOptions.txt
- entSelector.RunNb = { "10053" } ;
- a file staged according to run number.

Section 2

How to execute LArHEC TB software

ere are two ways to execute Athena, which depends on what you want to do.

Execute Athena without building

ou don't modify any existing package, you should not check out the package you nt to use. Binding necessary shared libraries at run time is sufficient. h a work is performed by CMT according to *requirements* file.)

Execute Athena with building

ou want to change a package, you have to check out the package you want to dify. You can produce your shared library in your own directory, and bind it at run e. Exercise 1

Execute LArHEC code without building

eral setup for LArHEC

emplate package (TestRelease) is prepared for users.

—— execute LArHECTB code without building -

```
las> goto_build [1]
```

```
clas> vi requirements [2]
```

```
clas> cmt config[3]
```

```
clas> source setup.sh[4]
```

```
clas> gmake [5]
```

```
clas> goto_run [6]
```

clas> cp \$LARHECTBPEDROOT/share/*.txt . [7]

omments

```
] add the following lines
```

```
use LArHECTBPed LArHECTBPed-00-* LArCalorimeter/LArTestBeam
```

```
use LArHECTBAna LArHECTBAna-00-* LArCalorimeter/LArTestBeam
```

```
[] $LARHECTBPEDROOT is set automatically by setup.sh script.
```

Exercise 2

Produce a pedestal and a standard ntuple

- un LArHECTBPed to create pedestal file
- athena LArHECTBPed_jobOptions.txt
- o you see the pedestal file?
- xecute LArHECTBAna, and
- Produce the standard ntuple
- athena LArHECTBAna_jobOptions.txt
- Have a look at the standard ntuple "hec_adc.ntp"

Section 3

How to add your code

Exercise 3

Execute LArHECTBAna with building

- ou want to change LArHECTBAna :
- add your own analysis code
- modify existing code
- should check it out, edit code and build the package.

——— copy LArHECTBAna package without building —

```
clas> . $LArTutorial/scripts/Setup_HECexample.sh[1]
```

```
oto your work area : $HOME/maxidisk/Tutorial/LArCalorimter
```

```
clas> cp -r $LArTutorial/code/LArCalorimeter/LArTestBeam . [2]
```

```
clas> goto_build[3]
```

```
clas> cmt broadcast cmt config [4]
```

```
clas> cmt broadcast gmake [5]
```

```
clas> goto_source [6]
```

Edit LArHECUserHist.cxx

- Search FIXME (two parts)
- book a histogram and fill the average of first 3 samples

Congratulations !

You successfully finished the tutorial