Hadronic Endcap Beam Test

$\begin{array}{c} \frac{e}{\mu} \mbox{ Determination from 1998} \\ \mbox{ and} \\ \mbox{ Preliminary Results from Protvino August 1999} \\ \mbox{ Analysis} \end{array}$

Matt Dobbs, University of Victoria

With majority of work and results from: Mikhail Levitski, IHEP, Protvino

Outline

- Methods and Assumptions for Calculating $\frac{e}{\mu}$ \rightarrow Results
- 120 GeV & 200 GeV μ energy distributions August 1999
- \bullet 120 GeV μ X-scan August 1999

just a response ratio... $\frac{e}{\mu} = \frac{\text{response to electrons}}{\text{response to muons}}$ $\alpha_{em} = \frac{1}{\text{response to electrons}} = \text{constant}$ is well known

$$rac{e}{\mu} \;=\; rac{E_{
m dep}(\mu)}{E_{
m vis}(\mu)} imes rac{1}{lpha_{em}}$$

Need care in determining $E_{dep}(\mu)$, $E_{vis}(\mu)$.

${\rm Gaussian} \otimes {\rm Landau}$

(Symmetric, mean = 0) \otimes (Asymmetric, mean \neq 0)

• mean

- conserved (same with or without noise)
- subject to large fluctuations (due to events in the tail)
- could also use truncated mean . . .
- most probable
 - well sampled fluctuations are small
 - need to de-convolute from noise

result should NOT depend on number of cells in cluster!

$E_{ m dep}(\mu)$

- no means of measuring in HEC beam test
- comes directly from MC no noise effects
- Vavilov regime (+ radiative effects)

 $E_{\rm vis}(\mu)$

- energy loss from: ionization, direct pair production, & Bremsstrahlung
- data includes noise!
- Two methods of unfolding from noise:

<u>Victoria</u>

Fit data to Landau/Gaussian convolution and extract Landau most probable

- $\chi^2 \simeq 1$
- identical results w/ Moyal function
- independent of cluster size

Assumptions:

• data approximates a Landau (radiative processes...)

<u>Protvino</u>

Extract most probable from data, unfold using MC results

$$E_{\rm vis} = E_{\rm vis}^{\rm DATA MP} \times \frac{E_{\rm vis}^{\rm M.C. MP}}{E_{\rm vis}^{\rm M.C.+NOISE MP}}$$

Assumptions:

• extra MC dependence

- \bullet 1,1,2,2 depth constants to account for factor 2 Cu thickness in back depth
 - necessary to preserve constant sampling fraction otherwise we would need to quote two different values for front/back wheels
 - difficult since electrons do not penetrate to back wheel
 - \rightarrow keeps response ratios constant
- additional constants to account for H.V. problems correction factor = $\frac{\text{total number subgaps}}{\text{functioning subgaps}}$
- optimal filtering
- 6 cell muon cluster (straight line through calorimeter)
- α_{em} from a 9 cell cluster (using > 9 cells does not change results) Victoria/IFVE (Minaenko) results in good agreement

$$\alpha_{em} \simeq 3.2 \frac{GeV}{\mu A}$$

1999/10/16 20.28

Protvino Analysis

All work by: Mikhail Levitsky

Data Muon 120 GeV runs 8492-8534 X scan for Y=13.4cm (X=-24,24; step 2cm)8492-8516 with MWPC data Muon 200 GeV runs 9336-9362 For comparison 120 and 200 GeV run 8525 M(X=8cm,Y=.0) 120GeV & run 9340 M(X=8cm,Y=.0) 200 GeV 4 Cell Cluster: ADC channels: 33,58,83,108 Calculation procedures Pedestals - mean value of 3d sample Only muon trigger for signal and noise Noise from first 5 time slices One method of signal reconstruction Cleland's method (optimal filter) for 5 samples, files: runs 8492-8534: dig_weights_amp_aug99_990822.dat & dig_weighte_tim_aug99_990822.dat runs 9336-9362: dig_weights_amp_aug99_990901.dat & dig_weights_tim_aug99_990901.dat For ADC channel 61 used weights 57 Calibration files: coeff_dig_aug99_990822.dat & coeff_dig_aug99_990901.dat HV Corrections (5 dead EST): W(k,n) where k=module & n=segment W(1,2) = 1.25W(2,4) = 1.25W(3,2)=2.0

W(3,4) = 1.25

August 1999: 120 GeV μ Energy Distribution

mean = 632.4 nA (Compare to 720 nA in August 98) $\frac{\text{signal}}{\text{noise}} = 3.7$ Miltheil Lexitalry, Protying

Mikhail Levitsky, Protvino

August 1999: 200 GeV μ Energy Distribution

mean = 712.5 nA $\frac{\text{signal}}{\text{noise}} = 4.2$ Mikhail Levitsky, Protvino

August 1999: 120 GeV μ X Scan

Y = 13.4 cm -24cm < X < 24 cm in 2 cm steps Mikhail Levitsky, Protvino

August 1999: 120 GeV μ X Scan

1st segment tie rods and module cracks are visible MWPC's give useful information

Mikhail Levitsky, Protvino

August 1999: 120 GeV μ X Scan

Mikhail Levitsky, Protvino

• $\frac{e}{\mu}$ for 1998 consistent by means of two different analysis methods

 $\frac{e}{\mu} \simeq 1.05 - 1.1$

- need to repeat with new timing corrections \rightarrow not yet available
- Protvino analysis \rightarrow shift in mean energy from 1998 to 1999 of 100 nA \rightarrow needs investigation
- Protvino analysis: good muon signal to noise ratio $\frac{\text{signal}}{\text{noise}} \simeq 4$
- Protvino analysis: tie rods and module crack visible in muon X scan