Endcap Hadronic Testbeam Data Analysis

Electron and Pion Results from April 1998

Matt Dobbs Michel Lefebvre Dugan O'Neil

University of Victoria Victoria, B.C.

July 9, 1998

Outline

- Electron Analysis
 - data
 - clustering, energy reconstruction
 - response
 - energy resolution
- Pion Analysis
 - data
 - clustering, energy reconstruction
 - pion sample (cuts)
 - minimization procedures
 (hadronic scale, depth weights)
 - energy resolution and response, point h
 - resolution and response at several impact points
 - effect of HV problems on Module 2
- Conclusions

<u>The Data</u>

• Electron data were analysed at 4 different impact points:

y = +83 mm

- Point D, Cell 5: x = -100 mm
- Point E, Cell 78: x = +100 mm y = +83 mm
- Point H, Cell 3: x = -100 mm y = -67 mm
- Point I, Cell 76: x = +100 mm y = -67 mm

Energy	point D	point E	point H	point I
(GeV)	Run #	Run #	$\operatorname{Run} \#$	Run #
20 1	7353	7350	7352^{+	$7351^{'}$
40	7298	7291	7295	7294
60	7255	7259	7253	7260
80	7299	7311	7303	
100	7334	7341	7330	7342
119.1	7065	7088	7071	7079

Clustering, Energy Reconstruction

- A three cell cluster was chosen to reconstruct the energy of the electrons. A map of the chosen cells is presented in Figure 1 for each impact point.
- Trigger cuts: physics, not muon, not random, three cell "subcluster signal shape" requirement (described later).
- Using the 3 cell cluster, the energy was reconstructed and fit in a $\pm 3\sigma$ range for each run, as shown in Figure 2. Signal peaks were reconstructed using the hec_adc digital filtering peak finding package.

June 9, 1998

MAD, ML & DO

• The global electromagnetic scale $(\alpha_{\rm em})$ was determined by minimizing the following χ^2 :

$$\chi^{2} = \sum_{\text{runs}} \frac{\left(\alpha_{\text{em}} \left\langle E_{\text{cl}}(\text{adc}) \right\rangle - E_{\circ}\right)^{2}}{\sigma^{2}}$$

where $\left< E_{\rm cl}({\rm adc}) \right>$ is the average from the fits shown in Figure 2.

We conclude:

 $\alpha_{\rm em} = 0.11 \text{ GeV/adc} = 3.4 \text{ GeV/}\mu\text{A}$

averaged over impact points D, E, H, & I.

Response

- Using α_{em} , we obtain the response plot shown in Figure 3, wherein data from all four impact points is superimposed.
- The response uniformity is improved by the calibration.
- Response linearity within 1%.

Energy Resolution

• The energy resolution curve was fit to the usual parametrization:

$$\frac{\sigma}{E} = \frac{\alpha}{\sqrt{E_{\circ}}} \oplus \beta \oplus \frac{\gamma}{E_{\circ}}$$

- This function was fit with three parameters free.
- Results of these fits are shown in Figure 4.
 We obtain a resolution of (for the 4 impact points combined, calibrated case):

$$\frac{21.5\%}{\sqrt{E_{\circ}}} \oplus 0.05\% \oplus \frac{0.8 \text{ GeV}}{E_{\circ}}$$

- Within errors, the energy resolution obtained is the same for calibrated and uncalibrated data.
- A 3% improvement in the sampling term is realized over our results presented May 1998. This is the result of the use of digital filtering and better electron isolation cuts.

<u>The Data</u>

- Pion data at 4 impact points were analysed:
 - \rightarrow Module 1
 - * Point D, Cell 5: x = -100 mm y = +83 mm
 - * Point H, Cell 3: x = -100 mm y = -67 mm
- y = +83 mmy = -67 mm

\rightarrow Module 2 - HV problem

- * Point E, Cell 78: x = +100 mm y = +83 mm
- * Point I, Cell 76: x = +100 mm y = -67 mm
- y = +83 mmy = -67 mm

Energy	point H	point d	point e	point i
(GeV)	Run #	Run #	Run #	Run #
20 1	7369	7354	7371	
40	7296	7297	7292	7293
60	7280	7281	7287	7285
80	7304	7300	7312	7310
100	7331	7335	7340	7343
120	7182	7196	7154	7146
180	7356	7355	7359	7360

Clustering and Energy Reconstruction Methods

- A cluster was defined for each impact point. Several cluster sizes were evaluated. Results are presented for 19 cell clusters. ≥ 97% of the total energy deposited in the calorimeter is contained.
- A map of the chosen cells is presented in Figure 5 for each impact point.
- The clusters are approximately symmetric with respect to one another.

June 9, 1998

MAD, ML & DO

Three different methods were employed to reconstruct the pion energy:

• <u>Simple Cubic Fit</u>

The signal peak *for each cell* in the cluster was determined using the hec_adc cubic fit package. In order to properly treat low energy cells:

- \rightarrow The signal maximum is constrained to be between the 7th and 9th time slice inclusively.
- \rightarrow The maximum of signals with low energy (defined as $E \leq 10\sigma_{ped}$) is taken to be the height of the 8th time slice (i.e. cubic fit is not employed).

• <u>Cubic Fit Over Entire Cluster</u>

The raw signal for each cell is summed over the entire cluster time slice by time slice:

$$E_{cluster}(i) = \sum_{j=1}^{cells} E_j(i),$$

where i=1,..,16 time slices.

A cubic fit is then performed on this summed signal, $E_{cluster}(i)$.

• Digital Filtering

The signal peak *for each cell* was determined using the hec_adc digital filtering package. Digital filtering weights were unavailable for several cells (due to a lack of calibration data). In these cases the signal peak was determined using simple cubic fit, as described above.

In all three cases energy dependent depth weights were employed.

Pion Sample (the Cuts)

- Trigger cuts: physics, not random, not muon
- Subcluster signal shape cut:
 - \rightarrow Trigger cuts did not properly veto "zero energy" events
 - \rightarrow Use 3 cell sub-cluster of cells within 19 cell pion cluster, at least one of these cells must contain signal (as defined by "Striegel signal search"). See Figure 6
- final data sample (after all cuts), point H shown in Figure 7

Calculation of the Hadronic Scale (α_{had})

- First obtain α_{had} (as for electrons). $\alpha_{had} = .141 \text{ GeV/adc}$ = $4.3 \text{ GeV}/\mu\text{A}$ (ave. over 4 impact points).
- To optimize the resolution, one weight for each depth (c_z) was calculated by minimizing the following equation for each energy:

$$\sum_{\text{events}} \frac{\left(\alpha_{\text{had}} \Sigma_z c_z E_{\text{cl}}^z(\text{adc}) - E_{\circ}\right)^2}{\sigma^2}$$

Figure 8 shows the depth weights obtained for impact point H using this method.

Impact Cell 3, Depth Weighted Nineteen Cell Cluster

Resolution and Response, Point H

• Results of the resolution fits on a 19 cell cluster with 3 free parameters are shown in Figure 9. For this impact point, using digital filtering, we obtain a resolution of:

$$\frac{71\%}{\sqrt{E_{\circ}}} \oplus 5.8\% \oplus \frac{5.4 \text{ GeV}}{E_{\circ}} \text{ 19 Cells, Uncalibrated Data}$$
$$\frac{88\%}{\sqrt{E_{\circ}}} \oplus 4.6\% \oplus \frac{3.9 \text{ GeV}}{E_{\circ}} \text{ 19 Cells, Calibrated Data}$$
• The results for different cluster sizes are presented in Figure 10 and are summarized below
$$\frac{89\%}{\sqrt{E_{\circ}}} \oplus 5.8\% \oplus \frac{3.6 \text{ GeV}}{E_{\circ}} \text{ 10 Cells, Calibrated Data}$$
$$\frac{75\%}{\sqrt{E_{\circ}}} \oplus 5.2\% \oplus \frac{6.3 \text{ GeV}}{E_{\circ}} \text{ 30 Cells, Calibrated Data}$$

• Figure 11 shows that the response for pions at this impact point varies by about 7% from 20-180 GeV. Calibration does not seem to effect these results

Comparison, 4 Impact Points

- The pion energy resolution was obtained (using digital filtering) at 4 different impact points (H,D,E,I). The results were consistent at all 4 points. This is shown in Figure 12.
- The response for pions was also obtained for each of these impact positions. The results are overlayed in Figure 13.
- Results are reasonably consistent in different impact points, despite HV problems in module 2.

Effect of HV Problem in Module 2

- 1 dead sub-gap (of 4) in each LAr gap in first half of back compartment, lower voltage (1200V) in 1/4 gaps of back half of back compartment.
- Expected effect: signal ≈3/4 of module 1 in back compartment due to dead gaps. Low voltage gaps are not expected to significantly affect results.
- The total energy (adc counts) in the third depth was compared for modules 1 and 2 for 180 GeV pions. The factor of 3/4 is verified.
- HV problems should lead to different depth weighting in module 1 and 2 for the back depth. Figure 15 shows the behaviour of the depth weights in the third compartment in modules 1 and 2. Again the factor of 3/4 is verified at high energy.

- Digital filtering leads to a consistent treatment for all energies.
- Electron results energy resolution as expected and response varies within 1% at all impact points.
- subcluster signal shape effective in isolating pion sample (particularly at low energies) from "zero energy" events. Presence of large number of "zero energy" events not fully understood.
- Pion energy resolution (calibrated): Module 1 D $\frac{109\%}{\sqrt{E_{\circ}}} \oplus 2.5\% \oplus \frac{2.3 \text{ GeV}}{E_{\circ}}$ $\frac{106\%}{\sqrt{E_{\circ}}} \oplus 2.2\% \oplus \frac{2.3 \text{ GeV}}{E_{\circ}}$ H $\frac{106\%}{\sqrt{E_{\circ}}} \oplus 2.2\% \oplus \frac{2.3 \text{ GeV}}{E_{\circ}}$ H I
- Response for pions varies by up to 7%, consistent over impact positions .
- Energy dependent weights allow recovery of performance in HV-affected module 2.
- More data needed at 20 GeV.