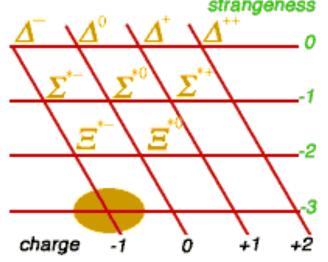
# Strange surprises

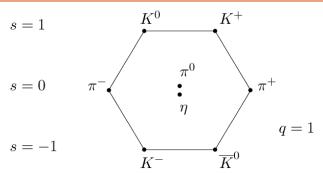
### Why strange?

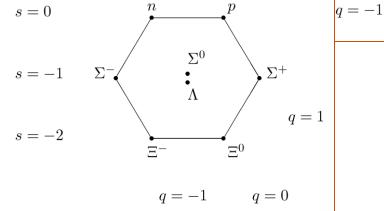
- Back in 1947, the need for the pion was obvious (Yukawa's theory of the strong force predicted it)
- The more massive "strange" particles that decayed slowly (weakly) to protons or pions didn't solve any existing problems; they created new ones
- For example, the famous  $\tau$ - $\theta$  puzzle
- And then parity violation
- And then strangeness oscillations
- And then the quark model
- And then CP violation

### Early discoveries

- Neutral and charged particles seen in cosmic rays
- Measurable decay lengths → meta-stable, decay weakly
- Weakly decaying baryon also seen  $(\Lambda \rightarrow p\pi)$
- Two particles with same mass but opposite parity seen:  $\theta \rightarrow \pi\pi$  (even parity) and  $\tau \rightarrow \pi\pi\pi$  (odd parity)
- This led Lee and Yang to see if there was evidence for parity conservation in weak interactions...
- There wasn't, as we now know (the Wu Co<sup>60</sup> experiment was proposed by Lee and Yang)


### Weak interactions and parity


- In fact, parity is violated "maximally" by the weak interaction, which consists of a "V-A" current, namely a vector minus axial vector combination that corresponds to a left-handed current
- We now know this is because the W bosons transmitting the weak force are left-handed
- There are no right-handed W bosons, at least not with masses below 500 GeV or so
- Is this surprising? All DNA has the same chirality, as do many other biological molecules. (I'm not suggesting that the chirality of DNA is related to weak interactions, but selection of a single chirality state happens in other places in nature)

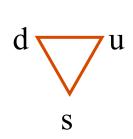

### Particle zoo

Lecture /

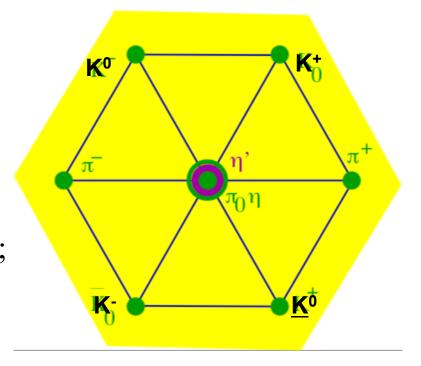
- With the advent of accelerators, many more hadrons were discovered (a couple dozen by 1961)
- Searching for patterns in these led Gell-Mann to arrange them in geometrical patterns based on charge and strangeness
- There was a meson octet, a baryon octet and a baryon decuplet s=0
- Missing particle ( $\Omega^-$ , triply strange) was found in 1964








q = 0


### Quark model - 1964

• This led Gell-Mann and Zweig to propose 3 quarks: u, d, s

 $\underline{\underline{u}}$   $\underline{\underline{d}}$ 



Meson "octet" became a "nonet";
 the additional particle (η') had
 already been discovered

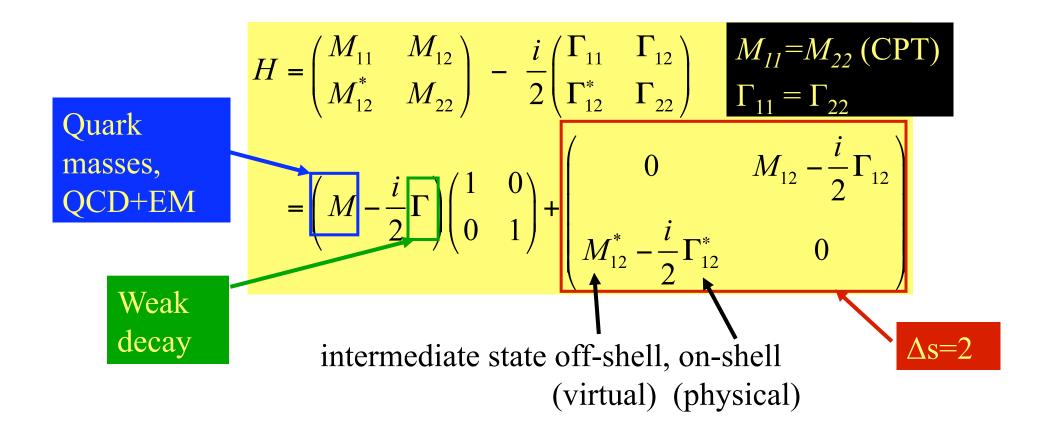


• Three states at center have Q=S=0; since they are flavorless combinations uu, dd and ss with no preserved quantum numbers they can mix to form the 3 physical states

## K<sup>0</sup>-K<sup>0</sup> oscillations

- K<sup>0</sup> mesons are produced in strong or EM interactions in states of definite *strangeness*
- 2<sup>nd</sup> order  $\Delta s$ =2 transition takes  $K^0 \rightarrow \underline{K}^0$  making decay eigenstates distinct from flavour eigenstates
- Neutral K mesons can be viewed as a 2-state system:

$$\left|K^{0}\right\rangle = \begin{pmatrix}1\\0\end{pmatrix} \qquad \left|\overline{K}^{0}\right\rangle = \begin{pmatrix}0\\1\end{pmatrix}$$


• Mass eigenstates diagonalize effective Hamiltonian

$$H|K_{L,S}\rangle = m_{K_L,K_S}|K_{L,S}\rangle$$

to produce the physically observable eigenstates

### Effective Hamiltonian for mixing

• Two Hermitian matrices M and  $\Gamma$  describe physics

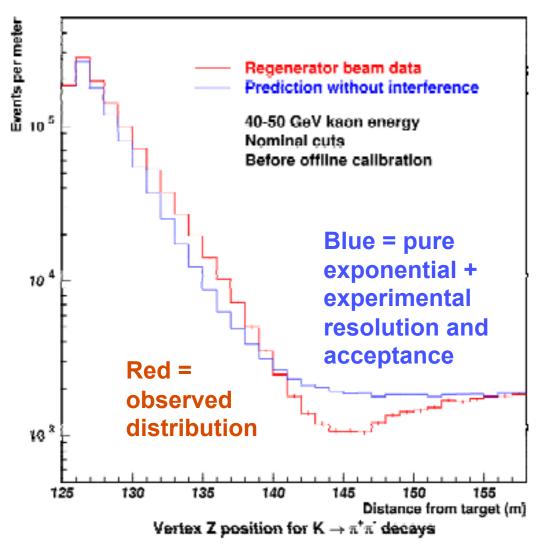


#### Time evolution

• The time evolution of the  $K^0\underline{K}^0$  system satisfies

$$I(K^{0}) = \frac{1}{4} \left[ e^{-\Gamma_{L}t} + e^{-\Gamma_{S}t} + 2e^{-[(\Gamma_{L} + \Gamma_{S})/2]t} \cos \Delta mt \right]$$

$$I(\overline{K}^{0}) = \frac{1}{4} \left[ e^{-\Gamma_{L}t} + e^{-\Gamma_{S}t} - 2e^{-[(\Gamma_{L} + \Gamma_{S})/2]t} \cos \Delta mt \right]$$


where I is the intensity versus time of a particle initially produced as a  $K^0$  (or  $\underline{K}^0$ ),  $\Gamma_L$  and  $\Gamma_S$  are the total widths of the decay eigenstates (inverse of the lifetimes), and  $\Delta m$  is the mass difference between the decay eigenstates. t is proper time

- The strangeness of the state oscillates with frequency  $\Delta m$
- Since  $\Gamma_L << \Gamma_S$  the interference terms dies away more rapidly than the  $\Gamma_L$  exponential decay

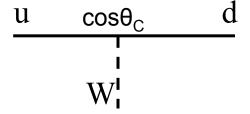
#### Data on oscillations

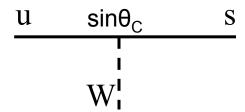
- 40-50 GeV kaon energy  $\rightarrow \gamma \sim 100$
- ct for  $K_S \sim 2.7$  cm, so  $L_{K_S} \sim 2.7$  m
- $L_{KL} \sim 1550 \text{ m}$
- $\Delta m \sim .53 \ 10^{10} \ s^{-1}$  $\Delta m / < \Gamma > \sim 0.9$

#### First look at E832 1996 run: kaon interference



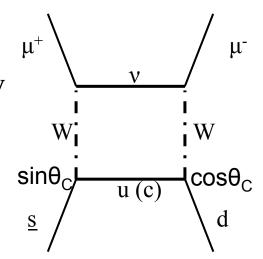
### Regeneration


- When traveling in vacuum the strangeness oscillates as shown previously
- When traveling through a slab of matter (not anti-matter!) the strong interactions differentiate between  $K^0$  and  $K^0$ , with  $\underline{K}^0$  being absorbed more rapidly
- The amplitudes of  $K^0$  and  $\underline{K}^0$  emerging from the slab will no longer be equal; the resultant beam will then include both  $K^0_L$  and  $K^0_S$  components; this is known as "regeneration"
- Predicted by Pais and Piccioni in 1955 and has been exploited extensively in experimental studies of neutral kaons


### Regeneration

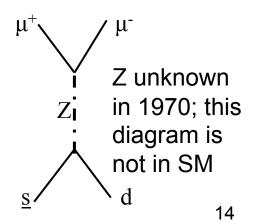
• Interferometry with kaons

### Cabibbo angle


- Strange particles cannot decay via the strong or EM interactions, which conserve quark flavor
- The charge-changing weak interaction (W boson) can do so, but the coupling strength between quarks is governed by a set of (apparently) arbitrary parameters
- The strange quark coupling to the up quark has a strength given by  $\sin \theta_C \sim 0.22$ , where  $\theta_C$  is the Cabibbo angle
- The down-up coupling strength is given by  $\cos\theta_{\rm C} \sim 0.98$
- The picture with 3 quarks is






#### GIM mechanism

- As of 1970 all weak interactions known were charge changing; there was no evidence for weak neutral currents
- Glashow, Iliopoulos and Maiani noted that the absence of neutral currents (e.g. the decay  $K^0 \rightarrow \mu^+\mu^-$ ) suggested the need for another charge +2/3 quark (a partner to s) to cancel the diagram at right; call it charm, c



- Charm was discovered 3 years later
- Mixing matrix relating weak and mass eigenstates; weak doublets are (u,d'), (c,s')

$$\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$



Jan 30, 2006

Lecture 7