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Tuesday Recap

• The Lagrangian formulation of mechanics is the best way to

study QFT.

• All Standard Model interactions can be obtained from the

requirement of local gauge invariance under various

symmetries applied to the (fermionic) matter fields.

• The resulting gauge bosons must be massless.

• The Feynman rules can be obtained directly from the

Lagrangian:

1. Free Lagrangian ⇒ Propagators

2. Interaction Terms ⇒ Vertex Factors
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Today: The Origin of Mass

• The Mass Term in L

• Spontaneous Symmetry Breaking

• The Higgs Mechanism
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The Mass Term

• Recall that the Lagrangian for a free spin-0 particle is

L = 1
2 (∂µφ)(∂µφ) − 1

2m2φ2

• The first term, containing derivatives of the field, is the kinetic

term.

• The second term, without any derivatives, is the mass term.

• Both the kinetic and the mass terms are quadratic in φ.

• These points are straightforward, yet important, as oftentimes

the mass term is hiding.
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Strange Mass Terms: Example 1

• Consider the Lagrangian

L = 1
2 (∂µφ)(∂µφ) + e−(αφ)2

At first glance, it looks like there is no mass term.

• Expanding the exponential, we find that

L = 1
2 (∂µφ)(∂µφ) +

[

1 − α2φ2 + 1
2α4φ4 − 1

6α6φ6 + . . .
]

• Ignoring the 1, we see that there is a mass term, along with

some higher-order couplings. In particular the mass can be

determined from

−α2φ2 = − 1
2m2φ2 ⇒ m =

√
2α
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Strange Mass Terms: Example 2

• Now consider the Lagrangian

L = 1
2 (∂µφ)(∂µφ) + 1

2µ2φ2 − 1
4λ2φ4 (for real µ and λ)

We don’t have to expand anything to find the φ2 term, but

upon comparison with − 1
2m2φ2, it looks like the mass is

imaginary!

• To sort this out, we need to go back to the construction of a

Lagrangian from

L = T − U

In this case our potential term is

U = − 1
2µ2φ2 + 1

4λ2φ4
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Finding the Ground State

• Perturbative QFT means that we start with the vacuum and

then add a couple of particles. This means that our physical

fields represent displacements away from the vacuum. If the

vacuum is at φ0, the physical degree of freedom is not φ, but

φ − φ0.

• We determine the vacuum by minimizing U . For

U = − 1
2µ2φ2 + 1

4λ2φ4

we find that the minimum occurs at

φ0 = ±µ/λ
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U = − 1
2µ2φ2 + 1

4λ2φ4 (µ = 1 and λ = 1 below)
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Expanding About the Minimum

• Define a new (physical) field variable

η ≡ φ ± µ/λ

• In terms of η, the Lagrangian becomes

L = 1
2 (∂µφ)(∂µφ) + 1

2µ2φ2 − 1
4λ2φ4

= 1
2 (∂µη)(∂µη) + 1

2µ2(η ∓ µ/λ)2 − 1
4λ2(η ∓ µ/λ)4

= 1
2 (∂µη)(∂µη) + 1

4µ4/λ2 − µ2η2 ± µλη3 − 1
4λ2η4

• We see that there is a sensible mass of m =
√

2µ, along with 3-

and 4-particle self-coupling interactions.
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Spontaneous Symmetry Breaking

• In the previous example, our Lagrangian was symmetric under

φ → −φ. Once we expanded about either of the 2 vacuum

states using the physical field η, this symmetry was lost.

• When the vacuum does not share the same symmetry as the

Lagrangian, we call this spontaneous symmetry breaking (SSB).

• The true symmetry of such a system is hidden by the arbitrary

selection of a particular asymmetrical ground state.

• Classic example of SSB: ferromagnets.
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SSB of Continuous Symmetries

• In the previous example, we had one spin-0 field and 2

degenerate vacuum states. Things become more interesting

when we look at continuous symmetries.

• Consider a Lagrangian with two scalar fields:

L = 1
2 (∂µφ1)(∂

µφ1)+
1
2 (∂µφ2)(∂

µφ2)+
1
2µ2(φ2

1+φ2
2)− 1

4λ2(φ2
1+φ2

2)
2

This Lagrangian is symmetric under (SO(2)) rotations in φ1-φ2

space, i.e.





φ1

φ2



 →





cos θ sin θ

− sin θ cos θ









φ1

φ2




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U = − 1
2µ2(φ2

1+φ2
2)+

1
4λ2(φ2

1+φ2
2)

2 (µ =
√

3 and λ = 1 below)
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Expanding About the Minimum

• Now there is an entire circle of minima:

φ2
1 + φ2

2 = µ2/λ2

• To proceed further, we have to choose a particular ground state

and then define our physical fields as expansions away from

this ground state. If we choose

(φ1)min = µ/λ (φ2)min = 0

then our physical fields will be

η ≡ φ1 − µ/λ ξ ≡ φ2
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The New Lagrangian

• Substituting for φ1 and φ2 in terms of η and ξ, it is

straightforward (but tedious) to show that the Lagrangian

becomes

L =
[

1
2 (∂µη)(∂µη) − µ2η2

]

+
[

1
2 (∂µξ)(∂µξ)

]

+µ4/(4λ2) + µλ(η3 + ηξ2) − 1
4λ2(η4 + ξ4 + 2η2ξ2)

• η is evidently a scalar field with mass mη =
√

2µ,

corresponding to radial oscillations up and down the ridges

near the ground state.

• ξ is a massless scalar field, corresponding to motion along the

ring of minima.

• The Lagrangian also contains various 3- and 4-particle

interactions involving η and ξ.
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Goldstone’s Theorem

• It is not an accident that ξ turned out to be massless.

• Goldstone’s theorem asserts that we will always get one or more

massless scalars when we spontaneously break a continuous

symmetry.

• We call these massless scalars Goldstone bosons.

• The closest thing we have to a massless scalar particle in

nature is the π. How is it, then, that spontaneous breaking of

the electroweak symmetry is going to provide masses to the

W± and Z0 without leaving behind a Goldstone boson for us

to detect?
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Changing the Notation

• In our previous example, rather than starting with 2 separate

real scalar fields φ1 and φ2, we can create 1 complex scalar field:

φ ≡ φ1 + iφ2

so that the initial Lagrangian can be written as

L = 1
2 (∂µφ)∗(∂µφ) + 1

2µ2(φ∗φ) − 1
4λ2(φ∗φ)2

• This substitution means that the rotational SO(2) symmetry of

φ1 and φ2 becomes a U(1) symmetry of φ:

φ → eiθφ

This is precisely the same symmetry which we gauged (i.e.,

promoted the symmetry from global to local) yesterday to

obtain QED.
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Gauging the Symmetry

• We promote the global U(1) invariance of the Lagrangian to a

local invariance by introducing a massless gauge field Aµ via

the covariant derivative:

Dµ = ∂µ + iqAµ

• The Lagrangian is then

L = 1
2 [(∂µ − iqAµ)φ∗] [(∂µ + iqAµ)φ]

+ 1
2µ2(φ∗φ) − 1

4λ2(φ∗φ)2 − 1
4FµνFµν

• Next, we spontaneously break the symmetry by picking out a

vacuum state. This gives rise, as before, to the fields

η ≡ φ1 − µ/λ ξ ≡ φ2
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After a LOT of Algebra...

L =
[

1
2 (∂µη)(∂µη) − µ2η2

]

+
[

1
2 (∂µξ)(∂µξ)

]

+
[

− 1
4FµνFµν + 1

2 (qµ/λ)2AµAµ
]

− 2i(qµ/λ)(∂µξ)Aµ

+(µ2/2λ)2 + q[η(∂µξ) − ξ(∂µη)]Aµ + (µq2/λ)ηAµAµ

+ 1
2q2(ξ2 + η2)AµAµ − λµ(η3 + ηξ2) − 1

4λ2(η4 + 2η2ξ2 + ξ4)

• As before the SSB leads to a massive scalar (η) and a massless

Goldstone boson (ξ), along with a pile of 3- and 4-particle

interactions.

• Wait a minute... the massless gauge boson has picked up a

mass! And what’s that (∂µξ)Aµ term supposed to mean?
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Getting Rid of the (∂µξ)A
µ Term

• Whenever we see a bilinear term like (∂µξ)Aµ involving 2

different fields, it means that we have incorrectly identified the

physical particles in the theory.

• How do we fix this? Since L is gauge invariant, let’s perform a

gauge transformation to make ξ = 0 (i.e., φ real). Then

L =
[

1
2 (∂µη)(∂µη) − µ2η2

]

+
[

− 1
4FµνFµν + 1

2 (qµ/λ)2AµAµ
]

+(µ2/2λ)2 + (µq2/λ)ηAµAµ

+ 1
2q2η2AµAµ − λµη3 − 1

4λ2η4

The gauge boson (A) is still massive and the Goldstone boson

(ξ) is gone!
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The Higgs Mechanism

1. Start with at least a couple of scalar fields related by a

continuous symmetry.

2. Promote the symmetry from global to local (i.e., “gauge it”) by

introducing one or more massless gauge bosons.

3. Spontaneously break the symmetry by choosing a particular

ground state, about which the symmetry is not manifest.

4. Rewrite the Lagrangian in terms of fields centered on the

ground state.

5. Use the symmetry to eliminate (i.e. “gauge away”) the

Goldstone bosons.

6. Voila! The gauge bosons have a mass. The surviving scalar

fields are massive Higgs bosons.
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Counting the Degrees of Freedom

• Before we gauge away the ξ, we have

Particle Spin Mass? # of D.O.F.

η 0 Yes 1

ξ 0 No 1

Aµ 1 No 2

• After we gauge away the ξ, we have

Particle Spin Mass? # of D.O.F.

η 0 Yes 1

Aµ 1 Yes 3

• Either way, there are 4 degrees of freedom.
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The Higgs Mechanism in

the Standard Model

• We have 3 gauge bosons (the W+, W−, and Z0) to provide

masses to, therefore we will need to create 3 Goldstone bosons.

• The simplest way to do this is to start with a complex scalar

Higgs doublet:
H =





H+

H0





These are not physical particles at this stage; they correspond

to the φ fields.

• After SSB, only the real part of

h0 = H0 − v/
√

2

survives. This is the Higgs boson.
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Counting the Degrees of Freedom

• Before we gauge away the Goldstone bosons, we have

Particle Spin Mass? # of D.O.F.

H doublet 0 Yes/No 4×1 = 4

W i
µ 1 No 3×2 = 6

• After we gauge away the Goldstone bosons, we have

Particle Spin Mass? # of D.O.F.

Re h0 0 Yes 1

W+, W−, Z0 1 Yes 3×3 = 9

• Either way, there are 10 degrees of freedom.
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The Standard Model Higgs

• We usually assume that the Higgs mechanism arises from a

complex scalar doublet (more complicated arrangements are

also possible).

• This leads to 1 massive Higgs boson.

• The Higgs couples to every massive particle in the Standard

Model. In fact, in more sophisticated formulations of the

Standard Model, all mass terms are generated by Yukawa

couplings to the Higgs.
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Higgs Boson Vertices
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What Makes Us So Sure the Higgs Exists?

• One word: unitarity.

• Just as we inferred the existence of the W± and the Z0 based

on the pathological high-energy behavior of certain scattering

cross sections, we find that high-energy divergences in

W+ W− → W+ W− scattering are cured by the Higgs boson.

• Technically, this doesn’t mean that the disease has to be cured

by the Higgs boson, but there had better be something new

before 1 TeV. The Higgs just happens to be the “simplest

something new”.
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Constraints on mH

• The mass of the Higgs is mH = v
√

λ/2 where v = 247 GeV is

fixed by GF and λ is an unknown dimensionless coupling

constant.

• mH can’t be too large, lest we violate unitarity.

• mH can’t be too small, lest the weak vacuum become unstable

(i.e., an even lower-energy state exists elsewhere).

• Even at energies below mH , the Higgs appears in Standard

Model loop diagrams. This allows us to infer the most likely

mass of the Higgs (as we’ll soon see).

• In a nutshell, the Standard Model Higgs has a mass

somewhere between 115 GeV (where LEP stopped looking)

and about 200 GeV. LHC will soon sort this out.
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Summary

• Perturbative QFT requires that we expand away from the

ground state.

• Spontaneous Symmetry Breaking implies that the ground state

does not share the same symmetries as the Lagrangian.

• When we spontaneously break a continuous symmetry, we

obtain one or more massless Goldstone bosons.

• When we combine local gauge invariance and SSB, we get the

Higgs mechanism, whereby the gauge bosons acquire mass by

“eating” the Goldstone bosons.

• The Standard Model contains 1 Higgs boson and (knock on

wood) it will be found soon at the LHC.
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Tuesday: Beyond the Standard Model

• Neutrino Oscillations

• Grand Unification


