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Lorentz Transformations

e Relate coordinates in: & — + &'
» Derived from the postulates of relativity

s For motion a]cmg the r-axis:

s = iz — vt
A

f
2 = oz

li L

£ = ¥ (.L —_— r—z-.L)

where
1
V1 — ¥ e

e Length Contraction: moving objects are shortened: L = L'/~

e Time Dilation: moving clocks run slow: 7' = ~T"



Application: Cosmic Ray Muons

With r, = 2.2 s, a muon produced in the upper atmosphere
could nominally travel (at v ~ ¢) 660 m betore decaying

The muon lifetime is enhanced through time dilation by a factor
of . Supposing  ~ 1), this allows a typical muon to travel 6.6
km before decaying.

Recall v = E/mand § = /1 — 1/?

Decay length in laboratory frame is ycr



Four-Vectors and Tensors

o Write «* {;’L'D._ #t £ : r;.:H} (¢t @, y. z) so that

[ g w0 0 \
w3y 0 0
() 0 1 0

.00 0 1/

(£} = Abg” with A=

e A ﬁ]H?‘—UECfﬂT is a four-component object which behaves like :+*
under Lorentz transformations.

e 1" is the contravariant and «,, is the covariant four-vector

e Theinvariant / = «"x,



Relativistic Invariant

» [t can be shown that
[;;'-U] 4 {:::1 )2 I:;;.:E ) ‘ {:J:S )2 (x "U)E {i:f:;1 )2 [:.ur:":E ]2 (:;.:'3 ) ¢
for any two frames related by a Lorentz transformation.

» If we define the metric tensor g,,,, — ding(l, —1. -1, -1}, we
have &, = y,,«" and

.'L'E e — LU,U,LUH _ {LL'”]E (LEI]E {JJE}E (LEH]E

is a Lorentz scalar.



Energy, Momentum, and Mass

Relativistic energy is I+ — ~vm
Relativistic momentum is p = ~nv

Define the four-momentum by p* = (K. p).

Then, »* = m? is a relativistic invariant.

For massless particles, # = |p| = hv

Classically, we always conserve 3-momentum (p), always conserve mass,
sometimes conserve kinetic energy, and always conserve total energy even if
we don't keep track of it all.

Relativistically, we always conserve 3-momentum (p), sometimes conserve
mass, sometimes conserve kinetic energy, and always conserve total energy.
More succinctly, four-momentum is conserved.



Conserved vs. Invariant quantities

» A conserved quantity remains the same, in a particular frame,
before and after an event.

¢ An invariant quantity is the same in all inertial reference fmmes.

— Energy is conserved, but not invariant.

— Mass is invariant, but not conserved.



Examples

» BaBar experiment : Here, a 9 GeV ¢~ beam collides with a 3.1
GeV ¢ beam.
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» What are the speeds of the colliding particles?

» What are the energies of the particles in the center of
momentum (CM) frame?



Speeds

o Use £ = ~m and m = 1.511 MeV to determine that ~_ = 17600
tor the electrons and v — 6070 for the positrons.

e Then, with~ =1//1 — 32, we solve for 7 = »/¢

i 1 |
A:___ II:-’:'?l - .'I 1 —_ — —~ ]_ —_— _‘ -
Voo 2
» Using v and vy, we have
Vo (1 — 10 %)e

ver = {1—10"%)e



o Inthe CM frame, p, = (Fow.powmland p, ) = (Feag, —Porag ) so that the
(invariant) square of the total four-momentum is:
(P +p.4)° = (2Ecm.0)°
- 4-’"7;:!': h%

e [nthelab frame,p - = (F_.p_)andp, = {F4.p—)so that
2= P pte +2p- Pt
= mi4+m +HWE_FEL —p_-py)

(Pe— T Po—
= 22FE_FEy—[p-[lp+/]
il 45_ E_|_

e Equating the CM and lab expressions for the invariant, we have
Eow = VE_E| = /(8 GeV){3.1 GeV) = 5.3 GeV
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Fixed Targets vs. Colliding Beams

e In BaBar, (9 4 3.1) = 12.1 GeV of beam energy leads to
(2 % 5.3) = 10.6 GeV of CM energy that can be used to make
new particles (in this case, the T{45)).

» How much beam energy would it take to produce this CM
energy if the target were fixed?

o Use the total four-momentum as an invariant. The individual
four-momenta will be {m.0) and (E, p), and therefore

(Po- + Pe-)” m? +m*+2[(m.,0) - (E,p)]
~ D

With 2 = 4FE2,, we find that E = 10° GeV!
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Fixed Targets vs. Colliding Beams III

» Why is the energy of the electrons and positrons at SLAC
different?

» What does this mean for design of the BaBar detector?
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Two-Body Decays

» Consider the decay « — & + v/

o In the CM frame, the final-state energies are unique, since the
two particles must emerge back to back (to conserve
momentum).

» How can we calculate these energies? Use an invariant, of

COUurse.
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o Four-vectors: p, = (m-.0), p, = (£,.p),and p, = (£,, —p).
» Conservation of four-momentum: p, =y, + p.

s p, = pr — p, leads to the invariant

LA _ F , 2
v, = {px—po)
- SR S, __
My, = Pr TP, — 2Pz Po
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» Similarly, », = pz — p, leads to the invariant

L
7,

o Notice that E, | E,

LA
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Three-Body Decays

» Consider decayssuchasnw -+ p+e+v.and = — & +v. + v,
» In the CM frame, the final-state energies are not unique.

» The observation that there was a range of electron energies in
the two decays above played a large role in the postulate of the
existence of neutrinos.
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Mandelstam Invariants

» For a scattering process like A — B — ' + D), define the
Mandelstam invariants by red

s = {pa+pgs)’
t = {pa—pc)’
U = {5.”.4 - Pn)z

» We typically define a scattering angle {/ in terms of the
direction of £’ with respect to A.
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Channels

» For A + [ — A + I’ scattering in some unspecified theory, the
Mandelstam invariants s, ¢, and « are related to 3 distinct
topological channels with which Feynman diagrams might be
drawn to represent the interaction:

A B A B A H

A B A B A B
s-channel t-channel u-Channel
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Summary

Special Relativity is an essential foundation of particle physics.
The CM frame vs laboratory frame
2-body decays are much simpler than 3-body decays.

Whenever possible, work with invariants formed from the
contraction of four-vectors.

The Mandelstam invariants are so common and useful that we
give them their own symbols: s, £, and .
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