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What is a Symmetry?

¢ Let’s translate the wavefunction ¢'(x) by an amount a:
Y(z) — Y(z + a)

+ Now expand ¢'(x + a) as a Taylor series about v(x)

oY 2 9%y
Y(z+a) = Y(z)+ ua %a$2x+...
L ,aﬂ'
B (T; 1! 3.1:“) ¥(z)

Ula)y(x) where Ula) = exp [ ;:J



Why U(a) is Unitary

¢ If our physical system is indeed invariant under translations,
then

(W(z)|e(z)) = (¥(z+a)|ly(z+ a))
= (U(a)y(z)|U(a)(x))
= (¥(2)|UM(a)U(a)¥(x))

¢ Clearly then, UTU = 1, or in other words Ut = U~



Connection to Hermitian Operators

¢ Recall that in Quantum Mechanics, every physical observable
is represented by a Hermitian operator (H' = H).

¢ Bvery Hermitian operator is a generator of a unitary operator

vialU = e'H,

 Factoring out a couple of constants so that U(a) = exp [iHa/ ]

and comparing to our previous result of U(a) = exp [a 8/0z],

we find that

_ho
p_-iﬂﬂ:

is a Hermitian operator which generates spatial translations.



Noether’s Theorem

¢ BEvery symmetry is associated with a conservation law.

Symmetry Conservation Law
Space translation Linear momentum
Time translation Energy

Rotation Angular momentum
Gauge transformation Electric charge




Approximate Symmetries

¢ Even approximate symmetries are usetul to us, so long as we
don’t demand 100% accuracy.

+ We'll soon be looking at an example of this, relating to the
nearly identical masses of the proton and neutron.



Unknown Symmetries

¢ Sometimes we have conservation laws which do not
correspond to a previously known symmetry.

¢ Perhaps this can inspire a theorist to come up with a model
which includes this symmetry...

¢ Or perhaps there is no such symmetry (i.e., it is an
approximate symmetry), and the conservation law will fail in
the future with a more detailed experiment. For example,
lepton and baryon number conservation are not associated

with fundamental symmetries.



Basic Group Theory

¢ Group Theory is the mathematical description of symmetries,

namely operations that leave a system invariant
e A group G is a set of elements with a binary composition law
(i.e., a “multiplication”) such that:
1. Closure: Va,be G:ab=ce G
2. Identity: de€ G |Vae G:ae=ca=a
3. Inverse: Vae Gla 'e€Glaa ' =ala=c¢e
4. Associativity: V a,b,c € G : (ab)c = a(be)
¢ (G is an Abelian group if the group multiplication is
commutative, i.e. ab = ba V a, b € G. Otherwise, the group is

non-Abelian.



Example - equilateral triangles

¢ The symmetry operations that leave an equilateral triangle
invariant are

— Rotation by +7/3 in the plane of the triangle
— Rotation by 7 around any axis that bisects a vertex of the
triangle

¢ Other symmetry operations can be built from combinations of
these 5



Group Representations

» A representation of a group is a mapping of the group
elements to a set of matrices, with matrix multiplication
providing the appropriate composition law.

¢ The groups we see in particle physics are Lie Groups, in which
the elements are continuously connected.

¢ In particular, we will be using SO(N), U(N), and SU(N).
S = Special = determinant 1
O = Orthogonal = MTM =1
U = Unitary = MM =1
so, e.g., SU(2) can be represented by a set of 2 x 2 unitary
complex matrices of unit determinant.
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Groups in The Standard Model

SU(3)c ® SU(2) @ U(1)y

¢ The three groups in the expression above basically correspond
to the three forces in the Standard Model; SU(3)¢ for the

strong (color) force, SU(2) . for the weak force, and U(1) for
the electromagnetic force.

¢ Grand Unified Theories (GUTs) try to stuff these three groups
into a larger group such as SU(5) or SO(10).

+ String theory deals with even larger groups such as SO(32) or
Eg bt Egi
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Angular Momentum

¢ In Quantum Mechanics, we cannot know everything about the
angular momentum J of a particle at a given time.

¢ The best we can do is the simultaneous knowledge of J? and
J., with eigenvalues:

TR = [j(j+ 1R Y
J. = (mjh)y

¢ This formalism applies equally well to orbital angular

momentum (L) as to intrinsic angular momentum, i.e. spin (S).

12



Spin-1/2

¢ Many of the particles we encounter have spin-1/2 (e.g.

leptons, quarks, many baryons).

¢ States are then described as a 2-component spinor:

x(ﬂ)&:xc++ﬁx
B

¢ Define S = (h/2)o, where the Pauli matrices, o, are

0 1 0 —i 1
g1 = Ja = O3 =
(1 U) (i U) (0

Note that

G'.I',G'J‘ éij ‘I'T:Eijkﬂ'k

[{J'.;,E'j] — 2'1.Ei_j;¢ﬁ';¢
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Fermions vs. Bosons

¢ J. eigenvalues must be spaced in multiples of h. Since
|m;’-"mx| = |m;’-"”"’ |,. this means that 7 = m;’-‘mx is either an
integer or a halt-integer.

e Particles with integer spin are bosons and obey Bose-Einstein
statistics (i.e., symmetric w.r.t. exchange of identical particles).

¢ Particles with half-integer spin are fermions and obey
Fermi-Dirac statistics (i.e., antisymmetric w.r.t. exchange of
identical particles).
The Pauli Exclusion Principle (i.e., 2 identical fermions can
never share the same state) follows directly from this.

14
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The Spin-Statistics Theorem

Ribbon demo: Interchanging two particles is equivalent to a 2
relative rotation.

The unitary transformation which eftects rotations is

U(8) = exp EJ - 9]
For particles with integer spin,
U(2n) = exp(2nni) =1
= bosons.

For particles with half-integer spin,
U(27) = exp[2(n + 1/2)7i] = —1
= fermions.
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Two particle systems I

|j1T m1 >

2 (2
[j2 m2 > '
|[j m>

Conservation of angular momentum requires:
J=J1+J2
m = m1 + Mg

We must also consider the relative angular momentum of the two particles with
respect to each other.



Two particle systems II

However, one must also consider the relative angular momentum
in addition to the intrinsic angular momentum.

Generally intrinisc angular momentum (S) is
S = J 1 + J b
and the total angular momentum (J) is

J=L+8S

17



Angular Momentum Addition

¢ Consider J = J; + Js.

¢ Since we do not know every component of Jy and J3, we
cannot even fix the magnitude of J. All we can say is that
m = m; + me and |j1 — j2| < j < j1 +Jo

Jz JI

VS.
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¢ Or, we could work in the other direction, whereby it is J that is
known.

e Given j; and j;, we wish to determine m; and m, subject to
the constraints of m; + m2 = m, |my| < ji, and |m2| < jo.

Jg JE

V5.
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Clebsch-Gordan Coefficients

¢ CG's represent the quantum mechanical overlap between the
two different descriptions of a coupled system:

Co i e = (G m | Jrmy, j2my)

 Por specitic choices of the eigenvalues, C(G’s can be slowly

derived by using the raising and lowering operators of the
angular momentum algebra

e The general formula is known and is useful for inclusion in a
computer program...

20



CG General Formula

Clil = GmsmemV(i+m)(i—m)(2j+1)
X \/i:jl + m1)!(j1 - ml}!(ji' ils 'mz}z(jz - m?)!

y (7 4+ 71— 32)(F — 51+ 32) (51 + j2 — J)!
(j + 71+ J2 +1)!

DI 1
- n! (Jj1+ 72 —J—n)l(jL —my —n)!
1

X
(jo +ma —n)!(J — j2 + mq + n)!(j — j1 — ma2 + n)!



CG Table (from PDQG)

http:/ /pdg.lbl.gov /2005 /reviews/clebrpp.pdt

1X1/2

Yz N

sl =13
Ul 12
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PDG web site

The “Particle Data Group” exists as a data repository for particle
physics, and has summaries of all experiments and measurements.
It also contains usetul tables and mini-reviews. Check it out:
http:/ /pdg.lbl.gov/

http:/ /pdg.lbl.gov/2005/reviews /contents_sports.html
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How to Read a CG Table

» First, find the appropriate table for the j; and j, of interest.

¢ [fit's m; and m- that are known and we want to find j, read
the appropriate row across. Don’t forget that all entries have
an implicit square root. For example:

[10) [1/2 1/2) = /2/3 |8/2 1/2) - /1/3 | 1/2 1/2)

¢ [fit’s j that is known and we want to find m and m,, read the
appropriate column down. For example:

13/21/2) = 1/3]11)]1/2 —1/2)
+v/2/3 [10) |1/2 1/2)
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Angular momentum of a ¢g state

* ¢=|33)andq=|; - 3)
¢ We can form 2 spin states [10) and |00)

(We are ignoring the angular momentum between the two quarks)

e For a v system, this corresponds to the 7 meson (J = 0) and
the p” meson (J = 1)

25



Direct Products and Direct Sums
¢ A spin-1 particle has 3 possible spin orientations (m = —1,0, 1)
and a spin-1/2 particle has 2 (m = —1/2, +1/2).

¢« When we couple these two particles together, we can get either
spin-1/2 or spin-3/2 (with 2 or 4 possible spin orientations,
respectively).

+ We represent this information via the statement:

3IR2=204
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Isospin

e neutron M =939 MeV
e proton M =938 MeV

¢ n-n, n-p and p-p interactions are identical if EM interaction
ignored

» Consider the (n,p) as components of the Nucleon (N) with
I-spin1/2

p=|1/2 1/2) n=|1/2 —1/2)

27



Spinors

¢ When we write the wavefunction for an electron as
X = = ax+ + Fx-
B

are x4 and x . merely two ditferent aspects of a single particle
or can we regard them as two separate entities?

e Perhaps we could try to use the spinor formalism for other
closely related pairs of particles, such as Isospin (proton and
neutron) w.r.t. the strong force.

28



Isospin Spinors

¢ Define a nucleon spinor 5 _ [ ¢
g
with 1 0
p= and n=
0 1

e The strong force is invariant under rotations in this isospin
space.
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Isospin Assignments

¢ For any hadrons made up of v and d quarks, construct isospin
multiplets:

p=|1/21/2) =n=[1/2 —-1/2)
t=|11) a®=|10) a =|1-1)
ATt =13/2 3/2) At =|3/2 1/2)
A=|3/2 —1/2) A~ =1|3/2 —3/2)
A=100)
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What About the Deuteron?

¢ The deuteron is composed of a proton and a neutron, which in
the language of isospin couple together as:

|1/2 1/2) |1/2 —1/2)=+/1/2|10)++/1/2|00)
* Is the deuteron the isotriplet | 1 0 ) state or the isosinglet | 0 0 )

state?

e If the deuteron is | 1 0 }, then the other two members of the
isotriplet should also exist with similar properties. BUT...
neither the nn and pp states exist as stable nuclei, hence we
conclude that the deuteron is an isosinglet.

31



What Can Isospin do for Us?

e It can help us predict relative cross sections without having to
know anything about the absolute cross sections. For example,
consider the reactions:

(a) p+p — d+nt
(b) p+n — d+7x°

(¢) n+n — d+=n~

» Since the deuteron is an isosinglet, the isospin of the final
states is just that of the pions. When we use a CG table to find
the overlap with the total isospin of the initial states, we obtain
the numbers 1, \/1/2, and 1, respectively, leading to:

Og:0p:0.=2:1:2
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mp Cross Sections
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Flavor Symmetries

¢ Isospinis an SU(2) flavor symmetry whose origin lies in the
near degeneracy of the masses of the v and d quarks.

¢ Insofar that the s quark is also somewhat lighter than most
hadrons, an SU(3) flavor symmetry will also provide a useful
description of hadron physics. This SU(3) ¢ is what got
Murray Gell-Mann his nobel prize. (Be careful, though, not to
confuse this with the color SU(3) which is the basis for QCD in
the Standard Model.)

¢ Since the ¢, b, and t are so much heavier than the other quarks,

there is not much point in working with SU(4), SU(5), and
SU(6) flavor symmetries.
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Summary

e Symmetries play a huge role in particle physics and are the
basis for conservation laws.

¢ Group theory is the mathematical language of symmetry.

¢ The quantum mechanical description of angular momentum is
a key ingredient of particle physics.

¢ Flavor symmetries, arising from the near-degeneracy of the
light quark masses, provide us with free information about the
strong interaction.
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