Interaction of particles in matter

- Particle lifetime $\tau: N(t) = e^{-t/\tau}$
- \bullet Particles we detect ($\tau > 10^{-10}$ s, c $\tau > 0.03$ m)
- Charged particles
	- e^{\pm} (stable $m=0.511$ MeV)
	- μ^{\pm} (c $\tau = 659$ m m=0.102 GeV)
	- ± (c- = 7.8m m=0.139 GeV)
	- K^{\pm} (c τ = 3.7m m=0.495 GeV)
	- p^{\pm} (stable $m=0.937$ GeV)
- Photons γ
- Neutral hadrons
	- $n (c\tau = 2.7 \times 10^8 \text{m} \text{ m} = 0.938 \text{ GeV})$
	- K^0_L (c $\tau = 15.5$ m m=0.498 GeV)

Energy loss: dE/dx

- • All charged particles can lose energy via interaction with the EM fields of atoms in matter
- For $\beta\gamma < 10^3$ the dominant energy loss mechanism is via ionization of atoms: $-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2}$ $\sqrt{\frac{1}{2}\ln{\frac{2m_e c^2 \beta^2 \gamma^2 T_{\rm max}}{I^2}} - \beta^2 - \frac{\delta}{2}}$
- Note the β ⁻² dependence and the dependence on Z and A. When $\beta\gamma$ is very large the logarithm dominates.
- Minimum is at $\beta\gamma \approx 3$
- x is measured in g/cm^2 , so $x = \rho \times L$

Energy loss - radiation

- Highly relativistic particles (γ >10³ or so) lose energy mostly via "bremsstrahlung" radiation (emitting photons); critical energy E_c is where dE/dx loss equals radiation loss
- This radiation is emitted along the direction of motion
- Energy lost through radiation is proportional to the energy of the particle (constant fractional loss): dE/dx $|_{radiation} = E/X_0$, where X_0 is the "radiation length" and is a feature of the medium $(X_0 \sim Z^{-2})$
- After a distance X_0 the particle retains a fraction $1/e$ of its energy: d $E_{rad}/E = dx/X_0 \Rightarrow E(x) = E_{initial} \exp(-x/X_0)$
- In practice, this is always the dominant energy loss mechanism for electrons; for heavier particles dE/dx usually dominates

Electrons

• In most materials electrons lose energy predominantly by radiation above a few 10s of MeV

Fractional

Figure 27.9: Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization

Muons

- Muons are like electrons, only ~200 times heavier.
- The mass makes a big difference: dominant energy loss is by dE/dx instead of radiation \rightarrow much longer range in matter than either electrons (which radiate photons) or hadrons (which interact strongly)
- Put a detector behind enough shielding and the particles that come through are (mostly) muons (consider, e.g., the atmosphere)

Energy loss of μ in Cu

Cherenkov radiation

- Charged particles can exceed the speed of light in media with indices of refraction $n > 1$.
- \bullet In this case they produce a cone of Cherenkov radiation with opening angle given by $\cos\theta_c = 1/(n \beta)$
- If β < $1/n$ there is no radiation (threshold velocity)
- \bullet This type of radiation is useful in determining the particle type (e, μ, π, K or p) when combined with a measurement of particle momentum (measure *p* and *v* to determine *m*)

Multiple Coulomb scattering

- •Charged particles scatter off the EM field (mostly of nuclei)
- \bullet The net effect of many small random scatters is a deflection in angle given by

Figure 27.8: Quantities used to describe multiple Coulomb scattering. The particle is incident in the plane of the figure.

 \bullet These deflections limit the accuracy with which particle trajectories can be measured

Photons

- • Photons lose energy via
	- Photoelectric effect
	- Rayleigh scattering
	- Compton scattering
	- $-$ e⁺e⁻ pair production
- \bullet The photons we're interested in measuring are always in the pairproduction region
- \bullet The low-energy behavior is relevant to detector design due to electromagnetic showers, which produce many low-energy photons

Electromagnetic showers

• Both photons and electrons at high energy initiate a cascade of pair-production and bremsstrahlung that leads to a "shower" of particles

• Once the electrons and photons are at low energies they scatter (see previous slides) and result in a large number of lowenergy photons

EM shower picture

- • Simulation shows development of a shower; play with it at http://www2.slac.stanford.edu/vvc/egs/basicsimtool.html
- • The lateral width of the shower is determined by multiple scattering of the electrons in the medium (Moliere radius)

Stanford Linear Accelerator Center

EM shower characteristics

- •The energy deposition varies with "depth" in the medium
- •Depth measured in radiation lengths X_0
- • Photon-induced showers start a bit later than electron-induced showers (initial pair production has to occur); effective radiation length for photons is $9/7$ X_0
- • The energy of the photons at the end of the shower is proportional to the incident particle energy – a useful feature for building detectors

Hadrons

- All hadrons can interact strongly in matter
- \bullet Neutral hadrons (e.g. neutrons) interact *only* this way
- \bullet Hadrons create a cascade of particles (a hadronic shower), which produces mini-EM showers (from γ daughters of π^0) and loses *or* gains energy through nuclear interactions
- \bullet Hadronic showers are much less uniform and regular than EM showers
- The nuclear absorption length λ is analogous to the radiation length X_0 for EM showers

Detector strategies

- "Non-destructive imaging" of charged particles
	- Use ionization energy loss, detect ionization trails
	- Use magnetic field to bend particles, determine momentum
- Determination of particle type
	- Measure speed in addition to momentum
	- Use presence/absence of Cherenkov light
- Absorption of photons / EM calorimetry
	- Use proportionality between incident energy and energy (or number) of photons in cascade
- Absorption of hadrons / hadronic calorimetry
	- Use rough proportionality (poorer resolution than for EM)
- Penetration of large amount of material \rightarrow muons (or neutrinos)

Detectors of charged particles

- Magnetic field dipole (for some fixed target detectors), solenoidal (for most colliding-beam experiments) or toroidal (large volume muon detection, e.g. ATLAS)
- Two main types:
	- Ionization based: gaseous mixture (usually including a noble gas, e.g. Ar or He)
	- Solid state, e.g. doped silicon, in which traversing charged particles create electron-hole pairs
- Both in widespread use.

Bubble and cloud chambers

- • Early detectors: spark, cloud chambers
	- Spark chambers use HV and initiate a discharge along the ionization trail left by a particle (like lightning); poor spatial precision
	- Wilson cloud chamber uses supercooled vapor; ionization trail seeds phase transition to liquid (little drops form along the trajectory). Photographic readout.
	- Cycle time ~minutes
- • Bubble chambers (Glaser)
	- Use superheated liquid; ionization trail seeds phase change to vapor
	- Good spatial resolution
	- Photographic readout (limits rate)
	- Pressure used to recondense liquid; cycle time ~1s

Big Bubble Chambers

- • Last and best of the kind: Gargamelle and the Big European Bubble Chamber (CERN, 1970s)
- • Small army of "scanners" were needed to search for interesting events and record trajectories numerically

Scintillation detectors

- Ionizing radiation causes some materials (e.g. organic plastics and inorganic crystals) to "scintillate", i.e. to release photons from the decay of molecules excited by the ionization.
- Scintillation light tends to be in the near UV; need "wavelength shifters" to facilitate optical readout
- Photomultiplier tubes record the generated light
- Scintillators are still in use; they are cheap (so large areas can be instrumented) and sensitive to the passage of a single charged particle.
- The fast decay time (few ns) of many scintillators makes them useful for triggering

Wire chambers

- Multi-Wire Proportional Chambers (Charpak) allow ionization trails to be recorded electronically (no need for scanners!)
- •Ionized electrons drift toward anode wires
- \bullet **E** field near anode $\sim \Delta V/r$
- \bullet Electrons are accelerated enough to cause an "avalanche" of ionization \rightarrow amplification of the signal (factor of 104 or so)

- •Resolution determined by wire spacing
- \bullet Better idea: use arrival time to determine position (better resolution with fewer wires)

Drift chamber

- • Ionization produced in a gas drifts in a modest electric field:
	- Drift speed is in the range of 10-100 μm/ns (depends strongly on what gas is used)
	- Record the time required for the ionization to drift to the anode with \sim few ns timing precision, allowing \sim 100 µm measurements
	- Diffusion reduces resolution for long drift paths
	- Charge deposited (proportional to primary ionization) allows a simultaneous measurement of dE/dx energy loss \rightarrow particle identification

BaBar Drift Chamber

- \bullet Detector was strung at TRIUMF in 1997
- • \sim 28000 wires; 7104 sense wires (20 μ m)
- •2.8m long, 0.2m to 0.8m in radius
- •4 axial and 6 stereo superlayers
- •Helium-isobutane (80/20) gas mixture

HEX2 - Wire 168 Isocrones every 50 n

Time projection chamber

- Ionization trails drifted along axis of cylinder in *parallel E and* B *fields* \rightarrow electrons spiral along field lines, limits diffusion
- •Long drifts (2m or more) are feasible
- •Readout is entirely on endplates – no wires in the bulk volume
- •Almost bubble-chamber—like pictures of trajectories:

STAR TPC at RHIC (Au-Au collisions)

Silicon detectors

- • Basic mechanism is electron-hole production along the path of a traversing charged particle in a reverse-biased region (i.e. where electrons and holes can't normally be found)
- Charge is collected on either strips or pixels bonded to the surfaces of the silicon wafer

Silicon detectors

- Excellent spatial resolution (5-50 μm)
	- Large number of electron-hole pairs produced (\sim 10⁴ in 300 μ m)
	- Diffusion is modest
	- Pitch (distance between strips) is small (25-200 μm); charge-sharing on nearby strips is used to determine track position (weighted average)
- Silicon detectors are relatively expensive, but large area $(-100m^2 \text{ of } Si)$ detectors are being built for LHC
- Large Silicon detector arrays have up to10 million readout channels $\rightarrow 10^7$ amplifiers, 10^7 ADCs, ... must use custom analog microchips for readout

BaBar Silicon Tracker

- •5 layers of wafers
- •Both r-φ and r-z measured
- Resolution per wafer \approx 15 μm
- Slow radiation damage over time (since 1999)

Electromagnetic calorimeters

- Two main categories:
	- Sampling calorimeters, consisting of an absorber interspersed with active (readout) layers
	- Homogeneous calorimeters, where the entire volume is active
- Properties of interest
	- Energy resolution
	- Spatial resolution
	- Shower "shape", i.e. spread and depth

Sampling calorimeters

- Stack of absorber (high Z material) and active medium (e.g. scintillator or wire chamber)
- Measure either the number or the energy of particles produced in the shower via a discrete number of samples
- Allows shower profile (depth) to be determined
- \bullet Energy resolution $\sigma_E \sim a/E^{1/2} + b$, where $a \sim 0.1$; dependence on $E^{1/2}$ comes from measuring $N \pm \sqrt{N}$ photons (since *E* is proportional to *N*)

CDF sampling calorimeter

• calorimeter is arranged in projective "towers" that point to the interaction region

Crystal calorimeters

- • Shower develops and is read out in the same medium; no sampling fluctuations to reduce resolution
- •Light is produced by scintillation or Cherenkov radiation
- •Longitudinal segmentation is more difficult than for sampling
- •Good energy resolution: $\sigma_F \sim a/E^{1/4}+b$, where $a \sim 0.03$ and *E* is measured in GeV

 CsI crystal being wrapped

KTeV calorimeter

Hadronic calorimetry

- Very different response to hadrons (e.g. π^+) and γ (which come predominantly from π^0 decay)
- Sampling calorimeters tend to be used (e.g. Cu and liquid Argon for ATLAS)
- Try to design calorimeter to equalize the response to these components of the hadronic shower (compensating)
- Resolution poorer than for electromagnetic calorimetry; typical values $\sigma_F \sim a/E^{1/2}$ with $a \sim 0.4$ -1.0

Muon detectors

- • Consist of wire chambers (or scintillators) separated from particle source by substantial shielding
- • Sometimes placed in magnetic field to allow independent measurement of muon momentum (e.g. ATLAS)

Triggering, readout, reconstruction

- Particles from interesting interactions leave signals in the detector, but so do particles from common and uninteresting processes, from electronic noise, etc.
- Reading the information (times and pulse heights for each channel) is impractical; it takes too long, and during the process the detector cannot record new events
- Triggering attempts to decide which events are worth reading out based on a subset of information obtained quickly; reduction factors are often 10⁶ or more
- Once a set of events is read out and stored, sophisticated algorithms reconstruct particles from the channels with signals and determine momenta, positions and energies with precision

Modern colliding-beam detectors

- Layered concept first tracking, then particle identification, then calorimetry, then muon detection
- Many examples size dictated by maximum particle momentum
- Variety of technologies dictated by performance, cost, accumulated expertise
- \bullet Huge undertaking – requires hundreds of scientists working together

BaBar detector

- •covers $\Omega = 0.90 \times 4\pi$ in CM frame
- •Asymmetric
- •Si strips at vertex
- •Drift chamber
- • Ring Imaging Cherenkov detector
- •CsI(Tl) calorimeter
- •Muon system

