
Neutrinos

Thanks to Ian Blockland and Randy Sobie for these slides

� spin

�� particle with no electric charge; weak isospin partners
of charged leptons

� ��� observed in 1953, ��� in 1962 and ��� in the 1990s

� neutrino physics is very topical
solar neutrino problem, neutrino mixing, neutrino masses
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Do Neutrinos Have Mass?

� Although we have always known that neutrinos are light, it is
an experimental matter to determine just how light.

� As far as direct measurements go:

� Flavor Mass Limit Process

��� ��� � ��� � ��� � � � � � 
 � � � ���

�� ��� � � ! "� � # � � � ��

�� �� � �$&% ' (� � 
 � � # � ��

� There is no fundamental reason (e.g., a symmetry) why�� )! .

� The Standard Model assumes that neutrinos are precisely
massless; accomodating non-zero masses is in many respects
straightforward.
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	*
 mass measurement

LEP experiments measured the limit on the � � mass using
 � � # � ' # + �� decays.
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Neutrino Mixing

� Supposing that neutrinos have mass, we must now allow a
mixing between the weak eigenstates and the mass eigenstates,
just as we have done for the quarks.

� The neutrino analogue of the CKM matrix is the
Maki-Nakagawa-Sakata (MNS) matrix.

� Like the CKM matrix, the MNS matrix can be parametrized in
terms of 3 mixing angles and 1 CP-violating complex phase.

� We label the neutrino mass eigenstates (in order of ascending
mass) as � � , � � , and � � .
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Neutrino Deficits

� In 1967, Ray Davis put 100,000 gallons of dry-cleaning fluid in
a tank a mile underground to try to measure the solar neutrino
flux.

� The measured flux (inferred from 1 Cl to Ar conversion every 2
days) was about a factor of 3 below the theoretical expectations
from the Standard Solar Model.

� Similar neutrino deficits were later observed for the
atmospheric neutrinos generated by cosmic rays.

� Surprisingly, both experiment and theory turned out to be
right and these effects are now understood as neutrino
oscillation effects.
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Neutrino Oscillations: 2 Flavor Model

� We will now illustrate how neutrino oscillations work in the
context of a 2-neutrino model.

� Neutrinos are always produced as weak eigenstates. Suppose
that at / )! we produce an electron neutrino:

0 � -! .1 ) 0 ��� 1

� Neutrinos propagate as mass eigenstates. In a 2-neutrino
model, the weak eigenstates and the mass eigenstates are
related by

���
��

) 234 5 4 687 5

94 6 7 5 234 5

� �
� �
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Neutrino Oscillations: Propagation

� In terms of the mass eigenstates, our original � � is

0 � -! . 1 ) 234 5 0 � � 1 �4 687 5 0 � � 1

� When a particle propagates in free space, it accumulates a
phase of 
 � : ;<

.

� Assuming that the spatial momentum of the original � � is passed
on to � � and � � , the energy of each neutrino is given by

= : ) > � � � �:

? 0 > 0 � � � �:' > �
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Neutrino Oscillations:

@ 	 ACB DE

� The two mass eigenstates pick up different phases as they
propagate, so that

0 � - / . 1 ) 
 � : ;GF < 234 5 0 � � 1 � 
 � : ;GH < 4 687 5 0 � � 1

� Going back to flavor eigenstates, this is

0 � - / .1 ) 
 � : ;F < 23 4 5 - 234 5 0 ��� 1 94 6 7 5 0 �� 1 .

� 
 � : ;GH < 4 687 5 -4 687 5 0 ��� 1 � 234 5 0 �� 1 .

� The probability of an oscillation from � � to �� is then

IKJLM - / . ) 0N �� 0 � - / .1 0 �

) OPO4 687 5 234 5 Q 9 
 � : ;F < � 
 � : ; H < R OPO �
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Neutrino Oscillations: STU

IKJLM - / . ) OVO4 6 7 5 234 5 Q 9 
 � : ;F < � 
 � : ;WH < R OVO �

) � X4 687 � ' 5 Y ' 9 Z 
 : [ ;GH � ;F \ < � 
 � : [ ;GH � ;F \ < ]^

) � �4 687 � ' 5 _ � 9 234 - = � 9 = � . / `

� With

a = ) a � �b 'dc and

= ? c U e f ? /U g /
c ? f
=

I JLM - / . ) ��4 6 7 � ' 5 h � 9 23 4 Q a � � fb ' = Ri

) 4 687 � ' 54 687 � �% ' j a � � -� � � . f - "lk .

= -m � � .
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Curves (red, blue, black) for

' 5 )! % � npo! % � o �% q j

and frequencyq o! % � q o! % ! �

, respectively. A detector might sample the region 8-12.
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Ways of Observing Neutrino Oscillations

� The oscillation probabilities depend on

5

,

a � � , f

, and
=

.

� We can either look for the appearance of a different neutrino
flavor (usually limited by background) or we can measure the
disappearance of the expected flavor (limited by calibration of
source and target).

Source � Types Mode Advantage

Solar ��� Disappearance Great distance

Atmospheric � � , � ��� , �� , � ��� Disappearance Variable distance

Reactor � � � Disappearance Low energy

Accelerator ��� , � ��� Either Control

=

and

f
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Current Status

� The mixing matrix appears to feature very large mixing angles
(LMA); the following gives a crude view of the sizes of the
matrix elements:

rVr
���

��
��

sVs ) rVr
! % � q ! %  q �! % ' 
 : t

9! % � q ! % ' q ! % j!

! % u q 9! % ' q ! % j!

sVs rVr
� �

� �
� �

sVs
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� Green hatch: � �

� Red right: ���

� Blue left: ��
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http://hitoshi.berkeley.edu/neutrino
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Neutrino Mass Terms

� If neutrinos do have a small mass, we could create Dirac mass
terms (just like for �v and ��w ).

� Since neutrinos do not carry non-zero quantum numbers, it is
possible that a neutrino is its own antiparticle. Such a neutrino
is known as a Majorana neutrino.

� Incorporating both Dirac and Majorana mass terms leads to the
seesaw mechanism, whereby the presence of a right-handed
neutrino at the GUT scale leads to

�� x � �zy,|{} ~

where � y is the Dirac mass of a typical Standard Model
fermion and

, {} ~ , as we’ll soon see, is approximately�! �� m � �

.
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Double Decay

� Certain unstable atoms, such as

� ���� � and

�� m � , can decay to
elements with two additional protons via double

�
decay.

� These decays cannot be regarded as two separate

�

decays
because the intermediate state is energetically off limits.

� As a result, double

�

decay is one big process in which two
separate neutrons simultaneously decay via � � c � 
 � � � ��� .

� Because

�

decay is a 3-body decay, the energy of the emitted
electron is not fixed.
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� 	

� Supposing that neutrinos are Majorana particles, the two
neutrinos involved in double

�

decay can actually be merged
into an internal line so as to produce neutrinoless double

�

decay.

�
���

��� �

� �

� 
 � 
 � �

� The

�

denotes the “transition” from � to � �. This leads to a
suppression of � � b =� .

� Now that each
�

decay is essentially a 2-body decay, the
energy of the electrons is fixed.
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� 	 vs.

� 	

Physics 424 Lecture 10 Page 32



Summary

� Neutrino masses, although not present in the SM, can easily be
incorporated, along with the MNS mixing matrix.

� �� � )! leads to neutrino oscillations (observed) and may lead
to

! � � �

(searched for).

� Structure of the MNS matrix is becoming better known; next
generation experiments will possibly measure CP violation in
neutrinos
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