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Thanks to Ian Blockland and Randy Sobie for these slides

Recall from the previous lecture...

� Feynman diagrams provide a convenient picture of particle
interactions.

� The Feynman rules allow us to translate Feynman diagrams
into mathematical expressions for the amplitudes.

� �� �

Theory is a toy theory which makes it easier to learn how
to use Feynman rules.

� Sometimes higher-order Feynman diagrams are needed to
improve the precision of a calculation.



2

Relativistic Wave Equations

� Klein-Gordon Equation

� Dirac Equation



3

Deriving Wave Equations

� Recall that when we substitute

� ��� � 	 
 � � �
��

into the classical expression for energy conservation,

� ��� � ��� 


we obtain the Schrödinger equation for a particle of mass �

� �
� � 	 �� � �� � � ��
��
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Relativistic Wave Equations

� Let’s see what happens when we use the relativistic
energy-momentum relation:


 � �  � � 

� � � �� �  � �

� With the covariant substitution � � � � � � ,

� � � � � �� �  � � �

� �  �
��  � 	  � � �  �

�� � � �� � � �

This is the Klein-Gordon equation.
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The Klein-Gordon Equation

� Discovered by Schrödinger, discarded, rediscovered by Klein
and Gordon.

� Consider a plane-wave solution to the Klein-Gordon equation:

� �! #" � � � $ % & '() &+*, - � $ % &/., 0

�� � � 1� �� � 2 � 
  � �  � �  � �

� For a given �, there are two possible solutions for




:


�� 3 �  � � 

What’s a negative energy supposed to mean?
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An Even Bigger Problem

� For the Schrödinger equation we have

� �
� � �4 5 4 � � � �
��� � 4 5 	  4 � 4 	  4 5 �

�6
�� � � �
��� � 	87 �4 5 	4 � 4 	4 5 � � � 	87 9

� It can be shown (Noether’s Theorem) that the Klein-Gordon
equation satisfies the continuity equation�;: �� � 	87 9 � �

for the probability : and probability current

9

. But

: � � < � 5 � �
�� � � � 5
�� � =

is not constant, nor is it even necessarily positive.
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The Source of the Problems

� The second-order time derivative in the

�
of the KG equation

is responsible for both the negative-energy plane wave
solutions and the misbehaving probability density.

� Dirac tried to fix this problem by looking for a relativistic
equation that, like the Schrödinger equation

>� � � �� ? �� ,
only contained first-order time derivatives.
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Dirac’s Approach

� Suppose a particle is at rest (i.e., �� @

). Then the (quadratic)
energy-momentum relation


 � �  � � 
can be factored into a pair of (linear) equations:

� � A� � �  � �

� � A� � � � � A � � � � �

2 � � A� � � � � BC � � A � � � � �

� Either linear equation leads to a configuration-space equation
which is first-order in time and satisfies the relativistic
energy-momentum relation.
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� It is not a trivial matter, though, to extend this factorization for
moving particles. Writing

� � � � �� � 1� � �D E � E � � � �GF H � H� � �
we need to determine the coefficients

D E
and F H

.

� Expanding out the right-hand side, we have

� � � � �� �  � � D E F H � E � H � � �GF E� D E� � E� � 

To eliminate the linear � term, we require

D E � F E

. The
quadratic term leads to

�  � F E F H � E � H
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�  � F E F H � E � H

� F E F H � � E � H � � H � E� ? �

� �GF E F H � F H F E� � E � H ? �

2 �GF E F H � F H F E� � ��I E H

� We typically write this last relationship as an anticommutator:

J F �" F K L � ��I � K

� With

�GF A�  � �

and

� F &�  � � �
, we might consider F A � �

andF & � �

, but then we would get

J F A" F & LM � �

. Our
anticommutator equation cannot be solved by any set of
complex numbers!
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The N Matrices

� Dirac’s clever idea was to let F represent a matrix. Specifically,
the

O�P O

matrices

F A � � �
� � � F & � � Q &

� Q & �

satisfy the anticommutation relation
J F �" F K L � ��I � K .

� This set of F matrices is known as the Bjorken and Drell
representation and it is commonly used at low energies. Other
choices exist, most notable of which is the chiral representation
which is useful at high energies. Of course, the physics is
independent of the specific choice of F matrices.
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The Dirac Equation

� Having successfully factored the relativistic
energy-momentum relation,

� � � � �� � � � � F E � E � � � � F H � H� � � � �

we can set either factor to zero.

� In momentum space, the Dirac equation is

F � � �� � � �

where � implicitly multiplies the

O� R

unit matrix.

� With � � � � � � , we get the configuration-space Dirac equation:
� �F � � �� � � 4 � �



13

Slash Notation

� When we contract F �

with a four-vector S � , we can abbreviate
this using the Feynman slash notation

F � S � � /S

� With the slash notation, the Dirac equation becomes

/�� � � �

� �
/

�� � � 4 � �
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Spinors

� �

/

�� � � 4 � �

� Since the F matrices are

O P O

,

4

must be a 4-component
column matrix. We call this a bi-spinor, Dirac spinor, or just
plain spinor. It is not a four-vector.

4 �
TUTVTWTUT

4YX
4 

4YZ
48[

\U\V\W\U\
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Solutions of the Dirac Equation

� Let’s start by looking for solutions that are independent of
position: �4

�;] � �4
�;^ � �4
�;_ � �

This simplifies the Dirac equation to

�F A �4
�� � � 4 � �

We will split the spinor into a pair of 2-component pieces:

4 � 4 `
4 a

4 ` � 4 X
4 

4 a � 4bZ
4c[
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� This leads to the pair of equations

�4 `�� � � � � 4 ` �4 a�� � � � � 4 a
whose solutions are

4 ` � � � � 4 ` � �� $ % &/d ( 4 a � � � � 4 a � �� $) &/d (

� Recall that for the Schrödinger equation, the characteristic time
dependence of the solutions is $ % & '(

. Evidently,

4 ` is a
solution with energy


�� � � , as we should expect, but

4 a

seems to have a negative energy


� � � .

� Dirac had hoped that a first-order (in

� ? � � ) equation would
avoid these negative energy solutions.
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Plan B

� Seeing as we seem to be stuck with the negative energy
solutions, Dirac’s next suggestion was that all possible
negative energy states were already filled by a Dirac sea of
particles. The Pauli Exclusion Principle would then leave only
the positive energy states available.

� The excitation of a sea electron would leave a hole which
would behave like a positive energy particle with a positive
charge. Eventually, Dirac worked up the courage to predict the
existence of the positron.

� Experimentalists had secretly been observing evidence for
antimatter for years, but had always discarded these
unphysical particles. Needless to say, the positron was quickly
“discovered”.
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Electrons and Positrons

� With the interpretation of negative energy states as positive
energy antiparticles, we can see how the Dirac equation has
four independent solutions for a particle at rest:

� $ % e� 4 fX g � $ % &/d ( TVTUTWTVT
�

�
�

�
\V\U\W\V\

4 f  g � $ % &/d ( TVTUTWTVT
�

�
�

�
\V\U\W\V\

� $ % h�

� $) e� 4 fZ g � $) &/d ( TWTUTVTWT
�

�
�

�
\W\U\V\W\

4 f[ g � $) &/d ( TWTUTVTWT
�

�
�

�
\W\U\V\W\

� $) h�
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Plane-Wave Solutions

� Next we will look for solutions to the Dirac equation of the
form 4 � ] � � i $ % &/., 0;j � ��

j � �� is a momentum-space solution of the Dirac equation,
satisfying �

/�� � � j � �
Using /� � F A � A� F 7 �

� 
 � �
� � � � �7 � Q

� Q �

� 
 � �7 Q

�7 Q � 
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�

/�� � � j � 
� � � �7 Q

�7 Q � 
� �

j `
j a

� � 
� � � j `� � �7 Q� j a

� �7 Q� j `� � 
 � � � j a

� The Dirac equation

�

/�� � � j � �

then gives us a pair of
coupled equations for j ` and j a :

j ` � � �7 Q�
� � j a j a � � �7 Q�
 � � j `

� These equations can easily be solved by substituting one into
the other and noting that

� �7 Q�  � �  7 �
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j ` � � �7 Q�
� � j a j a � � �7 Q�
 � � j `

� Substituting the second equation into the first, we have

j ` � � 
 � �  j `
which requires


 � �  � �  , just as we should expect. The
same thing happens with j a . Either way, we have two
solutions for




: 
�� 3 �  � � 

� By picking specific forms for j ` or j a (remember, one is fixed
by the other), we can construct a set of four solutions to the
Dirac equation for a moving particle.
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� With the normalization j klj � �m 
 m

, we have two particle
solutions

j fX g � n TWTVTUTWT
�

�
.po ') d.rq ) &/.rs') d

\W\V\U\W\ j f  g � n TWTVTUTWT
�

�
.rq % &/.rs') d% .�o') d

\W\V\U\W\

and two antiparticle solutions (satisfying
�

/� � � �Gt � �

)

t fX g � n TVTVTVTVT
.q % &/.rs') d% .po') d�

�
\V\V\V\V\ t f  g � � n TVTVTVTVT

.ro ') d.q ) &/.ps') d�
�

\V\V\V\V\

� In all cases,
n� u 
 � � and




is positive.
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Spins of the Plane-Wave Solutions

� We can generalize the Pauli spin matrices to the
O�P O

matrices
required for Dirac spinors:

v� w
� x xzy Q �
� Q

� If (and only if) the particles are traveling along the _ -axis, the
plane-wave solutions j andt will be eigenstates of

{}| .j fX g

andt fX g

are spin up, while j f  g

andt f  g

are spin down.
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Particles and Antiparticles

� In a typical experiment, we are dealing with particles of
specific energies and momenta, therefore it is the j andt

plane-wave solutions which are of interest to us.

� While the particle states are solutions to the original
momentum-space Dirac equation

�

/�� � � j � �

The antiparticle states, by virtue of reinterpreting the negative
energy particle states as positive energy antiparticles, satisfy

�
/� � � �Gt � �
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Big and Small Components

� Using the Bjorken and Drell representation of the F matrices,
we have shown that the plane-wave solution for a spin-up
electron is

j fX g � n TVTVTVTVT
�

�
.po ') d.q ) &/.ps') d

\V\V\V\V\

� At low energies, the upper components are much larger than
the lower components. As a result, it is possible to construct a
2-component representation of the particle which takes some
of the relativistic effects of antiparticles into account. This is
sometimes used in quantum chemistry and nuclear physics.
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Problems With Relativistic Wave Equations

� Well, we see that both the Klein-Gordon and Dirac equations
have negative energy solutions. In hindsight, we realize that
these are not pathologies of the theory, but rather that they
represent antiparticle solutions.

� The Dirac equation, meanwhile, leads to a sensible definition
for the probability density, since the antiparticle content is
made explicit. With the Klein-Gordon equation, antiparticles
also exist, and their negative number density leads to the
possibility of negative densities (i.e. because of pair creation,
relativistic wave equations are not strictly one-particle wave
equations).
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Summary

� The relativistic energy-momentum relation leads to the
Klein-Gordon equation, but a naive examination of this
equation leads to problems.

� Dirac tried to get around these problems with a first-order
equation. The KG problems remained and their solution was
to postulate the existence of antiparticles.

� We now realize that the Klein-Gordon equation describes
spin-0 particles and the Dirac equation describes spin-

X 

particles.

� The particle and antiparticle plane-wave solutions of the Dirac
equation will be used frequently in our formulation of QED.


