Transformation properties of spinors

e Lorentz Transformations of Spinors

e Bilinear Covariants

e The Photon

Slides from Sobie and Blokland
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Lorentz Transformations of Spinors

e Spinors are not four-vectors, therefore they do not transform
via A. How do they transform?

v = S

where for motion along the z-axis,

S
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Physics 424

Making a Scalar With a Spinor

Consider
D = |91 [* 4 2] ® + [03]? + [a?
Under a Lorentz transformation,

vy = (Sy)T(Sy)
— PT(STS)y

Since STS # 1 (check for yourself using the explicit
representation of S on the previous page), 179 is not a Lorentz
scalar.
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The Adjoint Spinor

e Just as four-vector contractions need a few well-placed minus
signs (i.e., g"¥) in order to make a scalar, we can add a couple
of minus signs to a spinor by defining the adjoint spinor:

=910 = (¥ ¢35 — 3 — i)
e Since ST/%S = +Y (again, check this yourself),

i = |1 |* + |Pa|® — 3] — [Ya?

is a Lorentz scalar.
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v°: The Black Sheep of the Family

e Define an additional y-matrix by

,75 — ,1:70,71,}/2,73

(You really don’t want to know what happened to 7*.)

¢ In the Bjorken and Drell representation,

e Note: (7°)? = 1 and 7° anticommutes with every other +:

"7} =0 = A
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Another Scalar?

e We have already seen how 7 is a Lorentz scalar.

e Since STy%¢®S = ~%4® (check this too),
by

is also a Lorentz scalar.

e This gives us 2 Lorentz scalars: 1) and y°1. What's the
difference?
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Parity

e Under a parity transformation
=Y
e Since
(Py)'°(Py) Py (PY)Ty°y° (Py)
' (7°) 179 P (7°) 1794
' (%) Ty —p'(7%) Ty
— Py = —py°Y

Y1) is a true scalar and % is a pseudoscalar.
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Bilinear Covariants

e There are 16 possible products of the form ;. These 16
products can be grouped together into bilinear covariants:

) Scalar 1 component

P21 Pseudoscalar 1 component

PyHa Vector 4 components

1%“751# Pseudovector 4 components

Yot | Antisymmetric tensor | 6 components

Note that:
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Why This is Useful

e We have a simple basis set {1,7°,v*,y*y°,o#"} for any 4 X 4
matrix, therefore we can always simplify more complicated
combinations of v matrices.

e The tensorial and parity character of each bilinear is evident.
This makes it easy to see why the QED interaction Lagrangian

_eA,u 7;’7u¢

leads to a parity-conserving electromagnetic force mediated by
a vector (i.e., spin-1) boson.

e To describe the parity-violating weak interaction, we could
(and do) mix vector (1)y*1)) and axial (1)y*~54) interactions.
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EM and photons

Maxwell’s equation
o0, F" =0A" — 0"(0,A") = 4nJ”
where O = 0,0, AY = (¢, A) and J¥ = (p,J)

(¢, A) are not uniquely determined and so we are allowed to
make a gauge transformation A* — A* 4 0¥\

We can demand the Lorentz condition 9, A" = 0

The Lorentz condition simplifies the Maxwell equations to

JA* = Ax JH
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Another Constraint

e Even with the Lorentz condition, we can make further gauge
transformations of the form A* — A* + 0* X without
disturbing [JA* = 47 J* so long as LI\ = 0.

e As aresult, we can impose an additional constraint.

We typically choose to set A° = 0 and thereby work in the

Coulomb gauge:
V-A=0
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Physics 424

Free Photons

For a photon in free space (J# = 0), the potential is given by
JA* = 0.

The plane-wave solution is

AP (z) = ae” Pk (p)

where €* is the polarization vector and p,p* = 0.

Although €* has 4 components, not all are independent. The
Lorentz condition requires that p*¢,, = 0 Furthermore, the
Coulomb gauge implies thate’ =0 ande-p =0

Since € is perpendicular to p, the photon is transversely polarized
and there are only 2 independent polarization states.
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