
Calculations in QED

� Electron-Muon Scattering
(Mott Scattering)

� Pair annihilation

� Higher-Order Diagrams in QED

Slides from Sobie and Blokland
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Recap

� The Feynman rules for QED provide the recipe for translating
Feynman diagrams into mathematical expressions for the
amplitude.

� If we are interested in the spin-averaged amplitude

��� � � � �

then we need not ever use explicit fermion spinors and photon
polarization vectors.

� Instead, Casimir’s Trick allows us to calculate spin-averaged
amplitudes in terms of traces of �-matrices.

� With practice, �-matrix traces can be taken quite quickly.
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Example: Electron-Muon Scattering

�

� 	�
 ��
 � 	�
 � �

� 	�
 ��� � 	�
 ���

� Only one diagram,
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� So far, this is a very general result that can be applied to
electron scattering off of any charged particle, except for
another electron or positron (why?).

� What we will do now is impose a succession of
approximations which will gradually convert this general
expression to a more specialized result.
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Mott Scattering

� Our first approximation is to assume that
.9 + 
 :
 ; and

that the scattering takes place in the lab frame where

.

is at
rest. We will neglect any recoil of the target.

� The differential cross section is given by

<>=< ? �
��� �� � �

� 8)@ . " �

Physics 424 Lecture 17 Page 6



Mott Scattering: Kinematics I

� The four-momenta are

��
 � � :
 ; 
 " � � � � .
 A " � � B � :
 ; � " ��� B � .
 A "

� The momentum transfer is then
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6
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Mott Scattering: Kinematics II

� We also need to evaluate the various

� �4L1 �4M "

factors in the
spin-averaged amplitude.
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Mott Scattering: Amplitude

� Using the kinematic results, the spin-averaged amplitude is
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Mott Scattering:

<>=< ?

� Substituting the spin-averaged amplitude into the appropriate
expression for the differential cross section, we have

<>=< ? � D
8)@ .

� � �� .

; �G IKJ � � HN 6 "
� P+ � * ; � EFG � � HN 6 " 7

� Q

6 ; �G IJ � � HN 6 "
� P+ � * ; � EFG � � HN 6 " 7

� This is the Mott formula. It describes Coulomb scattering off a
nucleus, so long as the scattering particle is not too heavy or
energetic (i.e. + 
 :
 ; R .

). It assumes that the target is a
point particle.
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Rutherford Scattering Limit

� If the incident particle is non-relativistic, we can simplify the
Mott formula further:

P+ � * ; � EFG � � HN 6 " 7 S + �

; � S 6 + :
(

:
is kinetic energy)

Q S T
 T � (Gaussian units)

<>=< ? � T
 T �& :G IKJ � � HN 6 "
�

� This is the Rutherford formula that we first saw in Chapter 6.
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Example: Pair Annihilation
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� From here, Griffiths proceeds immediately to positronium
decay, wherein the incoming particles are actually bound
together. He uses explicit forms for the spinors and
polarization vectors and it’s a mess. Go ahead and read
through it if you like. We will obtain (the square of) his final
result, �]\ ^`_ a bdc e � $ &� ��

in an equally messy way which makes use of the tools we have
developed.

Physics 424 Lecture 17 Page 13



Our Approach

� We will be calculating

��� � � � �

using traces. This will obviate
the need for explicit spinors.

� We will avoid imposing additional assumptions on the

momenta until after we have calculated
��� �� � �

.

� We can simplify the denominator factors arising from the
electron propagators:

� ��
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� � 
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Spin-Averaging
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� The spin-averaged amplitude will consist of three terms:

��� �� � � � � � � 
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First Term
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� To perform the sum over photon polarizations, we need the
following completeness relation:

k l bnm
Z [ !Z % � $ � ! %

Note that this is just
� $ � " times the numerator of the photon

propagator. Similarly,

� $ � " times the numerator of the electron
propagator yields the spin sum

�

/� *,+ "

.
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� At this stage, we have a few choices:

1. Expand the brackets and evaluate 36 separate traces, some
of which contain 8 �-matrices. (Very stupid)

2. Use the � -tensors to reduce the number of distinct indices in
the trace to 2 and then apply various contraction identities
of the form � ! r � ! � r s

This leaves (still 36) traces which contain no more than 4�-matrices. (Slightly less stupid)

3. Evaluate the traces on a computer. (Lazy but clever)
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The Computer Says...
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� Simplify this further with
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The Other Terms

� In the same fashion, we can obtain the other two traces. At this
stage, our result depends on+ ,

� � 
1 � � " , � � 
1 ��� "
, and

� � 
1 �4� "

(but it’s a little bit too long to show here).

� Everything we have done so far has been completely general;
it applies just as well to annihilation events in a high-energy� U � 	 collider as it does to the low-energy � U � 	 bound state:
positronium.

� The decay width of para-positronium can be derived from the
spin-averaged amplitude determined here, but it would take
too much class time to go through it.

Physics 424 Lecture 17 Page 19



Higher-Order Diagrams in QED

� The most famous higher-order process in QED is the
anomalous magnetic moment of the electron (or muon),
arising from the diagram �� 	 � 	

� �v "

In 1948, Schwinger showed that this modifies the electron� -factor from

6

to
�6 * QN @ "

. It is currently known to Q � ,
corresponding to an uncertainty in � � of about

D C 	 
 �

.
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Vacuum Polarization

� Recall from Chapter 5, that the Lamb Shift arises from vacuum
polarization effects in QED:
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Running of w

� Intuitively, we expect the electromagnetic force to strengthen
at high energies (short distances), as two particles will see each
other’s unscreened charges more than at low energies.
Quantitatively, the leading-order effect due to virtual � U � 	

pairs leads to Q �� T � � " � Q �C "

D $ xzy {| }��~
��� J x���� ��� �
�

Other types of virtual pairs modify this expression as various
thresholds are passed.

� Experimentally, it was observed at LEP that
Q � . ��� " B D
D 6 8
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Summary

� The Feynman rules for QED lead to a straightforward, albeit
sometimes tedious, algorithm for calculating

�
, as we saw in

the case of � � S � � and � U � 	 S � �.

� Once we calculate

�

, we can then impose additional
assumptions in order to get a specific physical result. We
obtained the Mott and Rutherford formulas, as well as the
spin-averaged pair annihilation matrix element.

� Higher-order QED diagrams reveal an even richer theory in
which the vacuum has observable interactions with the
particles we study.
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