Physics 424

Calculations in QED

e Electron-Muon Scattering
(Mott Scattering)

e Pair annihilation

e Higher-Order Diagrams in QED

Slides from Sobie and Blokland
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Physics 424

Recap

The Feynman rules for QED provide the recipe for translating
Feynman diagrams into mathematical expressions for the
amplitude.

If we are interested in the spin-averaged amplitude <|./\/l \2>

then we need not ever use explicit fermion spinors and photon
polarization vectors.

Instead, Casimir’s Trick allows us to calculate spin-averaged
amplitudes in terms of traces of y-matrices.

With practice, y-matrix traces can be taken quite quickly.
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Example: Electron-Muon Scattering

€ , P3 H oy Pa

€ , P1

e Only one diagram,

M  [a3(1ge7" ) ua <(p1_igg;)z) [@4(2ge7" ) u2]

@z ur ] [Uay,us)]
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g2

E [usyH u] [tay ug)

4

4(p1 — p3)? Tr [v*(#1 + m)y” (#s + m)]

X Tt [y, (B2 + M)y, ($a + M)]

)4 4 (pi'ps + pEpY + (m® — p1-p3)g™”)]

4(p1 — ps3
X [4 (p2upav + Pappov + (M? — po - pa)guv) ]
4g.

(p1 . p3)4 {2(p1 'p2)(p3 '194) + 2(p1 -p4)(p2 .p3)

+ 2m*(p2 - pa) + 2M?(p1 - p3)
— 4(p1 - p3)(p2 - pa)
+4(m? — p1 - p3)(M? — p2 - pa) }
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(M) = Sfi3)4 {(pr - p2)(ps - pa) + (1 - Pa) (P2 - Ps)

— m?(ps - pa) — M?(p1 - p3) + 2m>M?}

So far, this is a very general result that can be applied to
electron scattering off of any charged particle, except for
another electron or positron (why?).

What we will do now is impose a succession of
approximations which will gradually convert this general
expression to a more specialized result.
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Mott Scattering

e Our first approximation is to assume that M > m, E/, p and
that the scattering takes place in the lab frame where M is at
rest. We will neglect any recoil of the target.

e The differential cross section is given by

o (IMP)
dQ ~ (87M)?
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Mott Scattering: Kinematics I

e The four-momenta are
p1=(E,p1) p2=(M,0) p3=~(E,p3) ps=~(M,O0)

e The momentum transfer is then

(p1 — p3)° (0,p1 — p3)°
—Pi — P3 + 2p1 - P3
—2p?(1 — cos )
5 0

—4p?sin? =
psm2
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Mott Scattering: Kinematics II

e We also need to evaluate the various (p; - p;) factors in the
spin-averaged amplitude.

(p1 - p3) [p% +p3 — (p1 — p3)2] /2
m? + 2p? sin’ g

M2

ME

ME

ME

ME
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Mott Scattering: Amplitude

e Using the kinematic results, the spin-averaged amplitude is

<|Ml2> o 8_9‘;3>4 {(p1 - p2)(P3 - pa) + (P1 - Pa) (P2 - 3)
—m*(pa - pa) — M*(p1 - p3) + 2m*M?}

ge 2 12 2
IM?E? — m?*M
2p? sm49{

—M?*(m® + 2p*sin®(0/2)) + 2m*M?}

)) {E2 — p? sin2(9/2)}

)> {m2 + p? 0082(0/2)}
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Mott Scattering: j—g

e Substituting the spin-averaged amplitude into the appropriate

expression for the differential cross section, we have

Z_g <8W1M)2 (p2 51952]\(49/2))2 {m? + p?cos?(0/2)}

2

- 2 2 .2

m* + p~ cos”(6/2

<2p281n2(9/2)> { p ( / >}

e This is the Mott formula. It describes Coulomb scattering off a
nucleus, so long as the scattering particle is not too heavy or
energetic (i.e. m, E,p < M). It assumes that the target is a
point particle.
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Rutherford Scattering Limit

e [If the incident particle is non-relativistic, we can simplify the
Mott formula further:

{m*+p’cos®(0/2)} — m”
p° — 2mE (E is kinetic energy)

a — qiq2  (Gaussian units)

2
d_U _ q142
dQ (4E sin®(6/2) )

e This is the Rutherford formula that we first saw in Chapter 6.
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Example: Pair Annihilation

Y, P3 Y, P4 Y, P3 Y, P4

6_7 P1 €+, D2 e

p1 e, po

e No antisymmetrization = M = M; + M

i(p1 — Y3 +m)
(pl — p3)2 — m?

Y

My = [fvzagew ( ) <z‘gev”>u1}

3 (U2 ($1 — P3 + m)d3u1]

Physics 424 Lecture 17 Page 12



(p1 — pZ;2 — m?2 [Uady (1 — Y3 + m)d5uq]

2
" (p1 — 1532 — m?2 [2d3(P1 — P4+ m)dyun]

e From here, Griffiths proceeds immediately to positronium
decay, wherein the incoming particles are actually bound
together. He uses explicit forms for the spinors and
polarization vectors and it’s a mess. Go ahead and read
through it if you like. We will obtain (the square of) his final
result,

2
Msinglet — _496

in an equally messy way which makes use of the tools we have
developed.
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Our Approach

e We will be calculating <\j\/l |2> using traces. This will obviate

the need for explicit spinors.

o We will avoid imposing additional assumptions on the

momenta until after we have calculated <|M 2 >

e We can simplify the denominator factors arising from the
electron propagators:

2 2

m
2

(p1 — p3)® —m pi + p3 — 2(p1 - p3)

m”+0—2(p1 - p3) —m

—2(2?1 'ps)

? —2(191 'p4)

Similarly, (p1 —p4)> —m
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Spin-Averaging

M1+ My

—9e -
2(p1 .p3) [U2¢Z(¢l — ¢3 + m)f?iul]

9
Mo = (plgfp 5 (025 =+ m)diui]

e The spin-averaged amplitude will consist of three terms:

(IMP) = (M1 + M)

<|M1|2> + <\M2\2> + 2Re (M M)
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First Term

9
M 2(plg.ep3) U2y (1 — P35 + m)d5uq]

4

ge k %k
= <./\/l1 2> E €1,,€3,€3p€40
Ml 16(p1 - p3)? o Rl

xTr [y*($1 — B3 + m)v” (1 + m)y*(B1 — B3 + m)¥° (P2 — m)]

e To perform the sum over photon polarizations, we need the
following completeness relation:

*
pol.

Note that this is just (—¢) times the numerator of the photon
propagator. Similarly, (—¢) times the numerator of the electron
propagator yields the spin sum (g + m).
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4

(M) = oty (=) (=up)

X Tr [v*($1 — B3 + m)y” (B1 + m)¥° (1 — B3 + m)¥° (P — m)]

o At this stage, we have a few choices:

1. Expand the brackets and evaluate 36 separate traces, some
of which contain 8 y-matrices. (Very stupid)

. Use the g-tensors to reduce the number of distinct indices in
the trace to 2 and then apply various contraction identities

of the form S N o

This leaves (still 36) traces which contain no more than 4
~v-matrices. (Slightly less stupid)

3. Evaluate the traces on a computer. (Lazy but clever)
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The Computer Says...

4

(M) = ety (=) (=)

xTr [y* (B1 — B3 + m)V” (1 + m)y°(B1 — B3 + m)y° (B2 — m)]
= —64m* + 16p7(p1 - p2) — 32p3 (p2 - p3)
—16p3(p1 - pa) — 48m?(p1 - p2) + 32(p1 - p3) (P2 - P3)
+64m? (py - ps) + 64m”(ps - ps) — 64m’p3

o Simplity this further with

2

pi =p; =m p3 =p; =0

(P2 - p3) = (p1 - pa) (p3 - pa) = (p1 - p2) +m*
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The Other Terms

e In the same fashion, we can obtain the other two traces. At this
stage, our result depends on m, (p1 - p2), (p1 - p3), and (p1 - p4)
(but it’s a little bit too long to show here).

Everything we have done so far has been completely general;
it applies just as well to annihilation events in a high-energy

et e~ collider as it does to the low-energy e™ e~ bound state:

positronium.

The decay width of para-positronium can be derived from the
spin-averaged amplitude determined here, but it would take
too much class time to go through it.
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Higher-Order Diagrams in QED

e The most famous higher-order process in QED is the
anomalous magnetic moment of the electron (or muon),
arising from the diagram

€

v (B)

In 1948, Schwinger showed that this modifies the electron
g-factor from 2 to (2 + a/7). It is currently known to a*,
corresponding to an uncertainty in g, of about 1012

Physics 424 Lecture 17 Page 20



Vacuum Polarization

o Recall from Chapter 5, that the Lamb Shift arises from vacuum
polarization effects in QED:

Physics 424 Lecture 17 Page 21



Running of «

o Intuitively, we expect the electromagnetic force to strengthen
at high energies (short distances), as two particles will see each
other’s unscreened charges more than at low energies.
Quantitatively, the leading-order effect due to virtual e e~

pairs leads to 0
(i) = — o

- (32 (%)

Other types of virtual pairs modify this expression as various

thresholds are passed.

o Experimentally, it was observed at LEP that
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Summary

e The Feynman rules for QED lead to a straightforward, albeit
sometimes tedious, algorithm for calculating M, as we saw in
thecaseofeyu —wepande™ e™ — 1.

Once we calculate M, we can then impose additional
assumptions in order to get a specific physical result. We
obtained the Mott and Rutherford formulas, as well as the
spin-averaged pair annihilation matrix element.

Higher-order QED diagrams reveal an even richer theory in
which the vacuum has observable interactions with the
particles we study.
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