e Elastic e p scattering

o Inelastic e p scattering
Slides from Sobie and Blokland

Physics 424 Lecture 18 Page 1



Elastic Electron-Proton Scattering

e This is our best probe of the internal structure of the proton.

e [f the proton were structureless, we could simply recycle our
result for electron-muon scattering:

4
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with ¢ = p1 — p3 and

LY oo =2 (pi'ps + phpt + (m® — p1 - p3)g™”)
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But the Proton Isn’t Structureless...

e Instead of just replacing L, muon With L, proton, Which
assumes that the proton is a true point particle, we can

generically account for proton structure via

ge N
<|M| > Lelectron K,LW proton

q*
e Notice that the implied proton structure does not atfect the
electron-photon coupling or the photon propagator. All of the

complications are neatly stashed within K ,,,. Pictorially,
6_7 p3 P, P4
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So How Do We Calculate K"

proton °

e Even without assuming anything about the substructure of a

proton, we know that K, is a second-rank tensor.

In addition to ¢g"¥, we can construct tensors from the
four-vectors ps, p4, and q. Since ¢ = p4 — p2, only 2 of these
four-vectors are independent, from which we choose ¢ and
p2 = p. Thus, our choices are

174 v

g* p"p q"q” (p"q” + pq") (p"q” — p”q")

For electromagnetic interactions, L’ . is symmetric in p
and v, therefore we need not include (p*q¢” — p¥q*). This term
would be required for weak interactions (e.g., elastic

neutrino-proton scattering).
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Form Factors

e Using the four symmetric second-rank tensors available to us,
we write

K2 K4 Ks

K.L“/ — —K+ag*”

proton

—(p"q" +p"q")

where K, K5, K4, and K5 are unknown functions which we
refer to as form factors.

The form factors can depend on ¢?, the only scalar variable
available to us, since p* = M? and p - ¢ = —¢?/2. (This last
identity follows from squaring ps = p2 + ¢ and recognizing

that p = M? for elastic scattering.)
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Simplifying Things Further

o Using the Ward identity
QK ion =0

proton

we find that there are only 2 independent form factors:

q"q” Ky gt q”
— K, =g A v, 1
(o T ) (7 ) (7 5)

e The goal is then to measure these form factors experimentally

and to try to calculate them theoretically.
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Skipping a Bunch of Nasty Algebra...

e Working in the lab frame with the target proton at rest, we
assume that the energy of the incident electron, E, is
sufficiently large that m can be ignored. Both ¢ and the energy
of the scattered electron, E’, is fixed by the scattering angle:

, E
=1 + (2E/M) sin*(0/2)

We can obtain the differential cross section in terms of the form
factors K7 and Ko:

do ( @ ) E 2K sin?(0/2) + K5 cos®(0/2)]

dQ 4MEsin®(0/2)) E

This is the Rosenbluth formula.
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Inelastic Electron-Proton Scattering

e If the incident electron is sufficiently energetic, it is quite
unlikely that the proton will stay intact. Instead, we should be
considering the more general inelastic processe +p — e+ X

/

k
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Masking Our Ignorance

e As with the elastic case, we introduce a second-rank tensor
W, to describe the unknown details about the subprocess

v+ p — X. The electron vertex and the photon propagator are

<‘M| > ge MY

known, therefore
W (X)

electron

q*

e We can insert this spin-averaged amplitude into the Golden
Rule for scattering in order to compute a differential cross

section:
" s (Im*)

4\/(2?1 - p2)? — m%m%

- ((2765;1?5133) ((253?%@) <(2:j§)2nEn>

x (2m)* 6*(p1 +p2 —DP3 —Pa — ... — Dn)
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Inclusive Cross Sections

e Itis not feasible to measure every single piece of hadronic
shrapnel and to compute a cross section for each possible set of
final state particles. Instead, we typically measure only the
scattered electron.

e By integrating over all accessible final states X with all possible
momenta, we obtain the inclusive cross section:

i (o
14/ (p1 - p2)? (2m)32E;

47r1M ; / Wi (X) ((2765;?;@) o ((2j§£2nEn)

x(2m)46*(q+p —pa— ... — pn)

> AT MW ..,
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4 v
g. L*
2 39

4q4\/(p1 - p2)? — mims

) AT MW .

e With an initial electron energy of E/, whose mass we will

neglect,
\/(pl -p2)? —mims = ME
e The outgoing electron has energy E’ and

d’ps  |ps|®d|ps|dQ
Es E’
E"dE'" d©)

e Substituting these results, the differential cross section
simplifies to do o? E

___L,l“/
I
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Physics 424

do B
dE' dQ

Note that, unlike elastic scattering, E’ is not kinematically fixed
by E and 6 because the outgoing hadrons can have a range of
masses. Equivalently, the total momentum,

Dtotal = P4 +P5 + ...+ Dn

is not constrained by the condition p? ., = M?

This leaves us with 2 independent variables, for a given
incident energy:

Experimentalist:  E', 6

e
Theorist: ¢, x (az = — )
2q-p

Many other choices exist (v, y, Q2 etc.).
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Structure Functions

e From here, we proceed as with the elastic scattering case and
write the most general tensor W,,,, that depends on ¢, p, and
satisfies the Ward identity ¢, W*".

e This leads to an expression for the differential cross section in
terms of the two structure functions Wy (q?, x) and Wy (q?, z):

do Q 2 . 9 X
dE'dQ (2Esin2(9/2)) [2W1sin®(6/2) + W2 cos”(6/2)]

The structure functions are the inelastic generalization of the
elastic form factors K1(q?) and K5(q?).
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Summary

e Electron-proton scattering experiments provide us with a great
deal of information about the structure of the proton.

e For elastic electron-proton scattering, we can write the cross
section (the Rosenbluth formula) in terms of 2 form factors:
Kl (q2) and K2 (q2)

e For inelastic electron-proton scattering, we write an inclusive

cross section in terms of 2 structure functions: W1 (q?, z) and
Wa(q?, z).
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