Today: Electrodynamics of Quarks and Hadrons

- \bullet Elastic e p scattering
- ullet Inelastic $e\ p$ scattering Slides from Sobie and Blokland

Elastic Electron-Proton Scattering

- This is our best probe of the internal structure of the proton.
- If the proton were structureless, we could simply recycle our result for electron-muon scattering:

$$\langle |\mathcal{M}|^{2} \rangle = \frac{g_{e}^{4}}{4(p_{1} - p_{3})^{4}} \left[4 \left(p_{1}^{\mu} p_{3}^{\nu} + p_{3}^{\mu} p_{1}^{\nu} + (m^{2} - p_{1} \cdot p_{3}) g^{\mu\nu} \right) \right] \times \left[4 \left(p_{2\mu} p_{4\nu} + p_{4\mu} p_{2\nu} + (M^{2} - p_{2} \cdot p_{4}) g_{\mu\nu} \right) \right]$$

$$= \frac{g_{e}^{4}}{q^{4}} L_{\text{electron}}^{\mu\nu} L_{\mu\nu \text{ muon}}$$

with $q = p_1 - p_3$ and

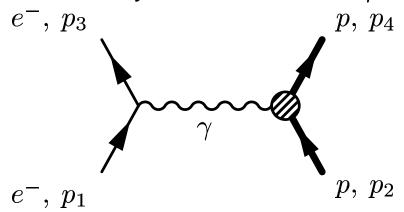
$$L_{\text{electron}}^{\mu\nu} = 2\left(p_1^{\mu}p_3^{\nu} + p_3^{\mu}p_1^{\nu} + (m^2 - p_1 \cdot p_3)g^{\mu\nu}\right)$$

But the Proton Isn't Structureless...

• Instead of just replacing $L_{\mu\nu \ \rm muon}$ with $L_{\mu\nu \ \rm proton}$, which assumes that the proton is a true point particle, we can generically account for proton structure via

$$\left\langle \left| \mathcal{M} \right|^2 \right\rangle = \frac{g_e^4}{q^4} L_{\text{electron}}^{\mu\nu} K_{\mu\nu \text{ proton}}$$

• Notice that the implied proton structure does not affect the electron-photon coupling or the photon propagator. All of the complications are neatly stashed within $K_{\mu\nu}$. Pictorially,



So How Do We Calculate $K_{\text{proton}}^{\mu\nu}$?

- Even without assuming anything about the substructure of a proton, we know that $K^{\mu\nu}_{\rm proton}$ is a second-rank tensor.
- In addition to $g^{\mu\nu}$, we can construct tensors from the four-vectors p_2 , p_4 , and q. Since $q=p_4-p_2$, only 2 of these four-vectors are independent, from which we choose q and $p_2=p$. Thus, our choices are

$$g^{\mu\nu}$$
 $p^{\mu}p^{\nu}$ $q^{\mu}q^{\nu}$ $(p^{\mu}q^{\nu} + p^{\nu}q^{\mu})$ $(p^{\mu}q^{\nu} - p^{\nu}q^{\mu})$

For electromagnetic interactions, $L_{\rm electron}^{\mu\nu}$ is symmetric in μ and ν , therefore we need not include $(p^{\mu}q^{\nu}-p^{\nu}q^{\mu})$. This term would be required for weak interactions (e.g., elastic neutrino-proton scattering).

Form Factors

• Using the four symmetric second-rank tensors available to us, we write

$$K_{\text{proton}}^{\mu\nu} = -K_1 g^{\mu\nu} + \frac{K_2}{M^2} p^{\mu} p^{\nu} + \frac{K_4}{M^2} q^{\mu} q^{\nu} + \frac{K_5}{M^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu})$$

where K_1 , K_2 , K_4 , and K_5 are unknown functions which we refer to as *form factors*.

• The form factors can depend on q^2 , the only scalar variable available to us, since $p^2 = M^2$ and $p \cdot q = -q^2/2$. (This last identity follows from squaring $p_4 = p_2 + q$ and recognizing that $p_4^2 = M^2$ for elastic scattering.)

Simplifying Things Further

• Using the *Ward identity*

$$q_{\mu}K_{\text{proton}}^{\mu\nu} = 0$$

we find that there are only 2 independent form factors:

$$K_{\text{proton}}^{\mu\nu} = K_1 \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{K_2}{M^2} \left(p^{\mu} + \frac{q^{\mu}}{2} \right) \left(p^{\nu} + \frac{q^{\nu}}{2} \right)$$

• The goal is then to measure these form factors experimentally and to try to calculate them theoretically.

Skipping a Bunch of Nasty Algebra...

• Working in the lab frame with the target proton at rest, we assume that the energy of the incident electron, E, is sufficiently large that m can be ignored. Both q^2 and the energy of the scattered electron, E', is fixed by the scattering angle:

$$E' = \frac{E}{1 + (2E/M)\sin^2(\theta/2)}$$

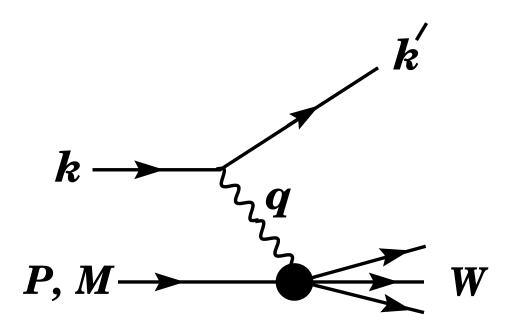
• We can obtain the differential cross section in terms of the form factors K_1 and K_2 :

$$\frac{d\sigma}{d\Omega} = \left(\frac{\alpha}{4ME\sin^2(\theta/2)}\right)^2 \frac{E'}{E} \left[2K_1\sin^2(\theta/2) + K_2\cos^2(\theta/2)\right]$$

This is the *Rosenbluth formula*.

Inelastic Electron-Proton Scattering

• If the incident electron is sufficiently energetic, it is quite unlikely that the proton will stay intact. Instead, we should be considering the more general *inelastic* process $e+p \rightarrow e+X$



Masking Our Ignorance

• As with the elastic case, we introduce a second-rank tensor $W_{\mu\nu}$ to describe the unknown details about the subprocess $\gamma + p \to X$. The electron vertex and the photon propagator are known, therefore $\left< |\mathcal{M}|^2 \right> = \frac{g_e^4}{\sigma^4} \, L_{\rm electron}^{\mu\nu} W_{\mu\nu}(X)$

• We can insert this spin-averaged amplitude into the Golden Rule for scattering in order to compute a differential cross section:

frion:

$$d\sigma = \frac{S \langle |\mathcal{M}|^2 \rangle}{4\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}}$$

$$\times \left(\frac{d^3 \mathbf{p}_3}{(2\pi)^3 2E_3}\right) \left(\frac{d^3 \mathbf{p}_4}{(2\pi)^3 2E_4}\right) \cdots \left(\frac{d^3 \mathbf{p}_n}{(2\pi)^3 2E_n}\right)$$

$$\times (2\pi)^4 \delta^4(p_1 + p_2 - p_3 - p_4 - \dots - p_n)$$

Inclusive Cross Sections

- It is not feasible to measure every single piece of hadronic shrapnel and to compute a cross section for each possible set of final state particles. Instead, we typically measure *only* the scattered electron.
- By integrating over *all* accessible final states *X* with *all* possible momenta, we obtain the *inclusive cross section*:

$$d\sigma = \frac{g_e^4 L^{\mu\nu}}{4q^4 \sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}} \left(\frac{d^3 \mathbf{p}_3}{(2\pi)^3 2E_3}\right) 4\pi M W_{\mu\nu}$$

$$W_{\mu\nu} \equiv \frac{1}{4\pi M} \sum_X \int W_{\mu\nu}(X) \left(\frac{d^3 \mathbf{p}_4}{(2\pi)^3 2E_4}\right) \cdots \left(\frac{d^3 \mathbf{p}_n}{(2\pi)^3 2E_n}\right)$$

$$\times (2\pi)^4 \delta^4(q + p - p_4 - \dots - p_n)$$

$$d\sigma = \frac{g_e^4 L^{\mu\nu}}{4q^4 \sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}} \left(\frac{d^3 \mathbf{p}_3}{(2\pi)^3 2E_3}\right) 4\pi M W_{\mu\nu}$$

- With an initial electron energy of E, whose mass we will neglect, $\sqrt{(p_1 \cdot p_2)^2 m_1^2 m_2^2} = ME$
- The outgoing electron has energy E' and

$$\frac{d^3\mathbf{p}_3}{E_3} = \frac{|\mathbf{p}_3|^2 d|\mathbf{p}_3| d\Omega}{E'}$$
$$= E' dE' d\Omega$$

• Substituting these results, the differential cross section simplifies to $\frac{d\sigma}{dE'\,d\Omega} = \frac{\alpha^2}{\sigma^4}\,\frac{E'}{E}\,L^{\mu\nu}W_{\mu\nu}$

Physics 424 Lecture 18 Page 11

$$\frac{d\sigma}{dE'\,d\Omega} = \frac{\alpha^2}{q^4} \, \frac{E'}{E} \, L^{\mu\nu} W_{\mu\nu}$$

• Note that, unlike elastic scattering, E' is *not* kinematically fixed by E and θ because the outgoing hadrons can have a range of masses. Equivalently, the total momentum,

$$p_{\text{total}} = p_4 + p_5 + \ldots + p_n$$

is not constrained by the condition $p_{\text{total}}^2 = M^2$

• This leaves us with 2 independent variables, for a given incident energy:

Experimentalist:
$$E'$$
, θ

Theorist:
$$q^2 \ , \ x \qquad \left(x \equiv -\, \frac{q^2}{2q \cdot p}\right)$$

Many other choices exist $(\nu, y, Q^2, \text{ etc.})$.

Structure Functions

- From here, we proceed as with the elastic scattering case and write the most general tensor $W_{\mu\nu}$ that depends on q, p, and satisfies the Ward identity $q_{\mu}W^{\mu\nu}$.
- This leads to an expression for the differential cross section in terms of the two *structure functions* $W_1(q^2, x)$ and $W_2(q^2, x)$:

$$\frac{d\sigma}{dE' d\Omega} = \left(\frac{\alpha}{2E\sin^2(\theta/2)}\right)^2 \left[2W_1\sin^2(\theta/2) + W_2\cos^2(\theta/2)\right]$$

The structure functions are the inelastic generalization of the elastic form factors $K_1(q^2)$ and $K_2(q^2)$.

Summary

- Electron-proton scattering experiments provide us with a great deal of information about the structure of the proton.
- For elastic electron-proton scattering, we can write the cross section (the Rosenbluth formula) in terms of 2 form factors: $K_1(q^2)$ and $K_2(q^2)$.
- For inelastic electron-proton scattering, we write an inclusive cross section in terms of 2 structure functions: $W_1(q^2, x)$ and $W_2(q^2, x)$.