Lecture 19

- The Parton Model
- Bjorken Scaling
- Parton Distribution Functions

Slides from Sobie and Blokland

Extending the Rutherford Experiment

Recall that based on ^a surprisingly high number of large-angle events in elastic -scattering, Rutherford deduced atomic substructure (i.e., the nucleus)

In a similar fashion, one can investigate the angles involved in e p scattering, particularly in the *deep inelastic scattering* regime where q^2 is large.

is large.
960s). The them as The proton was found to have substructure (SLAC, late 1960s). These constituents came to be known as *partons*. Although we now recognize them as quarks and gluons

Three Levels of Behavior

- A low-energy electron scatters *elastically* off ^a proton. This is relatively simple to understand in terms of the *elastic form* $\mathit{factors}\ K_1(q^2)$ and $K_2(q^2)$.
- \emph{i} nelastic structure functions $W_1(q^2,x)$ and $W_2(q^2)$ A medium-energy electron usually scatters *inelastically* off ^a proton. This behavior is quite complicated and it involves the
- (a, x) and W_2
alastically off scattering and it involves *parton distribution functions*. *inelastic structure functions* $W_1(q^2,x)$ *and* $W_2(q^2,x)$ *.
A high-energy electron scatters <i>elastically* off partons within t
proton. This behavior is simpler to understand than inelastic A high-energy electron scatters *elastically* off partons within the

Elastic and inelastic scattering

Parton scattering

• The cross section $e + p \rightarrow e + X$ should reduce to $e + q \rightarrow e + q$ (which is identical to $e + \mu \rightarrow e + \mu$)

$$
\frac{d\sigma}{d\Omega dE_3}(e\mu \to e\mu) = \frac{4\alpha^2 E_3^2}{q^4} \left[\cos^2 \frac{\theta}{2} - \frac{q^2}{2m} \sin^2 \frac{\theta}{2} \right] \delta(\nu + \frac{q^2}{2m})
$$

$$
\frac{d\sigma}{d\Omega dE_3}(ep \to eX) = \frac{4\alpha^2 E_3^2}{q^4} \left[W_2 \cos^2 \frac{\theta}{2} + 2W_1 \sin^2 \frac{\theta}{2} \right]
$$

where $\nu = E_1 - E_3$ (initial and final energies)

- For convience define $Q^2 -q^2$ (Q^2 is a negative quantity).
- Relating $e\mu \rightarrow e\mu$ and $ep \rightarrow eX$ cross sections gives

$$
2W_1^{point}=\frac{Q^2}{2m}\delta(\nu-\frac{Q^2}{2m}) \hspace{1cm} W_2^{point}=\delta(\nu-\frac{Q^2}{2m})
$$

• At large Q^2 , inelastic ep scattering is viewed as elastic e-quark scattering off a free quark inside the proton

Bjorken Scaling

Bjorken's hypothesis was that the inelastic structure functions, at high energy and *at* fixed *x* (recall $x = Q^2/2M\nu$), cease to depend on q^2 . More specifically,
 $MW_1(\nu, Q^2) \rightarrow F_1(x)$
 $\nu W_2(\nu, Q^2) \rightarrow F_2(x)$

 ν , Q^2) \rightarrow $F_1(x)$ ν $W_2(\nu, Q^2) \rightarrow F_2(x)$

as $Q^2 \to$

This behavior, which was confirmed in the 1970s at SLAC, is known as *scaling*.

Callan-Gross relation

- Suppose each parton in the proton carries a fraction x of the proton momentum $p_i^{\mu} = xp^{\mu}$ and $m_i = xM_p$
- Comparing the $e q \rightarrow e q$ and $e q \rightarrow e X$ cross sections gives

momentum
$$
p_i^{\mu} = xp^{\mu}
$$
 and $m_i = xM_p$
\nComparing the $e q \rightarrow e q$ and $e q \rightarrow e X$ cross sections gives
\n
$$
2W_1^i(point) = e_i^2 \frac{Q^2}{2M_p^2 x} \delta(\nu - \frac{Q^2}{2M_p x})
$$
\n
$$
W_2^i(point) = e_i^2 \delta(\nu - \frac{Q^2}{2M_p x})
$$
\nTo get the total contributions of all the partons we need to integrate over all x and weight it by the probability $f(x)$ for part is having fraction x of the partor.

 $\frac{1}{x}$
ati $\int^T u^2 dx = 2M_p x^2$ and $2M_p x$ and $2M_p x$
To get the total contributions of all the partons we need to integrate over all x and weight it by the probability $f_i(x)$ for parti i having fraction x of the proton momentum

$$
W_2(point) = \sum_i \int_0^1 dx f_i(x) e_i^2 \delta(\nu - \frac{Q^2}{2M_p x})
$$

This gives

$$
\nu W_2(point) = F_2(x) = x \sum_i e_i^2 f_i(x)
$$

$$
M_p W_1(point) = F_1(x) = \sum_i e_i^2 \frac{f_i(x)}{2}
$$
Leture 19

The Callan-Gross Relation

- While Bjorken scaling is ^a consequence of partons within the proton, it does not restrict the specific type of partons.
- By making an assumption on the spin of an individual parton, Bjorken's scaling functions, $F_1(x)$ and $F_2(x)$ can be related to each other:

Spin-0 partons:
$$
\Rightarrow \frac{2xF_1(x)}{F_2(x)} = 0
$$

\nSpin- $\frac{1}{2}$ partons:
$$
\Rightarrow \frac{2xF_1(x)}{F_2(x)} = 1
$$

\ne the partons have spin- $\frac{1}{2}$.
$$
2xF_1(x) =
$$

\nion. (Gross is one of the 2004 Nobel Pri

 $n-\frac{1}{2}$ partons: \Rightarrow
e partons have sp
(Gross is one of t $\frac{2xF_1(x)}{F_2(x)}$
in- $\frac{1}{2}$. $2xF_1(x)$
he 2004 Nob $\frac{F(x)}{2(x)} = 1$
 $2xF_1(x) = 4$ Nobel P₁ Experiments indicate the partons have spin- $\frac{1}{2}$. $2xF_1(x) = F_2(x)$ is known as the *Callan-Gross relation*. (Gross is one of the 2004 Nobel Prize winners.)
 $F_1(x)$ the *Callan-Gross relation*. (Gross is one of the 2004 Nobel Prize winners.)

Parton Distribution Functions

- We have now related Bjorken's scaling functions $F_{1,2}(x)$ to the probability distribution functions (hereafter to be called PDFs) probability distribution functions (hereafter to be called PDFs) $_i(x)$.
- To ^a first approximation, if quarks are truly free within the nucleus for sufficiently high-energy probes, the PDFs will be -functions. For the proton then,

$$
F_2^p(x) = x \left\{ 2\left(\frac{2}{3}\right)^2 \delta\left(x - \frac{m_u}{M}\right) + \left(-\frac{1}{3}\right)^2 \delta\left(x - \frac{m_d}{M}\right) \right\}
$$

More generally, we can incorporate the QCD interactions
etween quarks by generalizing the PDFs:

$$
F_2^p(x) = x \int \left(\frac{2}{3}\right)^2 y(x) + \left(\frac{1}{3}\right)^2 d(x)
$$

Windows Change is a series of the contract of $\ddot{}$ More generally, we can incorporate the QCD interactions between quarks by generalizing the PDFs:

$$
F_2^p(x) = x \left\{ \left(\frac{2}{3}\right)^2 u(x) + \left(\frac{1}{3}\right)^2 d(x) \right\}
$$

Leture 19

Constraints on PDFs

The precise determination of $u(x)$ and $d(x)$ will be left to experiment, but these functions must satisfy certain *sum rules*:

$$
\int_0^1 x u(x) dx = 2 \int_0^1 x d(x) dx
$$

(i.e., total momentum carried by u quarks is twice that of d quarks.)

 Experimental surprise: both sides of the above equation are momentum is accounted for. What happened to the other 46%? measured to be 0.36, meaning that only 54% of the proton's

Gluons

- Since gluons are electrically neutral, they do not contribute to e p scattering, but they are evidently hoarding away some of the proton momentum (and spin too).
- This is one way in which QCD adds complexity to the Constituent Quark Model. Another is the presence of additional quarks via $q \to q \bar{q}$. This leads to a long list of PDFs that will be required to describe the proton accurately:

 $u(x)$ $d(x)$ $s(x)$... $\bar{u}(x)$ \bar{d} (x) $\bar{s}(x)$... $g(x)$

This is discouraging. Where we once had just one unknown function $F_2(x)$, we now have 13!

Relating the PDFs

By distinguishing between *valence* and *sea* quarks, we can clear up most of the clutter. Since the sea quarks are all produced by the same gluon-splitting mechanism,

$$
\bar{u}(x) \simeq \bar{d}(x) \simeq \bar{s}(x) \simeq s(x)
$$

The c , b , and t quarks are sufficiently heavy as to be ignored.

For $u(x)$ and $d(x)$, we separate the valence and sea contributions, so that

$$
u(x) = u_v(x) + s(x)
$$
 $d(x) = d_v(x) + s(x)$

 $u_v(x) + s(x)$ $d(x) = d_v(x) + s(x)$
DFs are related to the proton PDFs by is The neutron PDFs are related to the proton PDFs by isospin (i.e., $u_v^n(x) = d_v^p(x)$), so we have many different ways to
measure the PDFs. $\frac{d}{dx}$ sur measure the PDFs.

Proton and Neutral PDFs I

Proton structure function (uud)

$$
\frac{F_2^p(x)}{x} = \frac{4}{9} \left[u^p + \overline{u}^p \right] + \frac{1}{9} \left[d^p + \overline{d}^p \right] + \frac{1}{9} \left[s^p + \overline{s}^p \right]
$$

Similarly the neutron structure function (udd)

$$
\frac{F_2^n(x)}{x} = \frac{4}{9} \left[u^n + \overline{u}^n \right] + \frac{1}{9} \left[d^n + \overline{d}^n \right] + \frac{1}{9} \left[s^n + \overline{s}^n \right]
$$

Using isospin invariance

$$
up = dn = u(x)
$$

$$
dp = un = d(x)
$$

$$
sp = sn = s(x)
$$

We get

$$
\frac{F_2^p(x)}{x} = \frac{4}{9} \left[u + \overline{u} \right] + \frac{1}{9} \left[d + \overline{d} + s + \overline{s} \right]
$$

$$
\frac{F_2^n(x)}{x} = \frac{4}{9} \left[d + \overline{d} \right] + \frac{1}{9} \left[u + \overline{u} + s + \overline{s} \right]
$$

Proton and Neutral PDFs II

The proton consists of 3 valence quarks (u_v, u_v, d_v) accompanied by many quark-antiquark pairs

$$
u = u_v + u_s \t d = d_v + d_s
$$

$$
u_s = \overline{u}_s = d_s = \overline{d}_s = s_s = \overline{s}_s = s
$$

The quark distributions must give the correct quantum numbers

 $\int [u - \overline{u}] dx = 2$ $\int \left[d - \overline{d}\right] dx = 1$
 $\int \left[s - \overline{s}\right] dx = 0$

So that

$$
\frac{F_2^p(x)}{x} = \frac{1}{9} [4u_v + d_v] + \frac{4}{3}s
$$

$$
\frac{F_2^n(x)}{x} = \frac{1}{9} [u_v + 4d_v] + \frac{4}{3}s
$$

Comparison with experiment ^I

$$
\frac{F_2^p(x)}{x} = \frac{1}{9} [4u_v + d_v] + \frac{4}{3}s
$$

$$
\frac{F_2^n(x)}{x} = \frac{1}{9} [u_v + 4d_v] + \frac{4}{3}s
$$

The ratio $\frac{F^n}{F^p}$ tends to
1 if s dominates 1 if ^s dominates 4 if d_v dominates if u_v dominates

Comparison with experiment II

Difference between proton and neutron functions

$$
F_2^p(x) - F_2^n(x) = \frac{x}{3} [u_v - d_v]
$$

Scaling Violations

- At extremely large values of q^2 , it is observed that the PDFs do
depend slightly on q^2 ($F_2(x) \rightarrow F_2(x, q^2)$), in conflict with
Bjorken's scaling hypothesis. depend slightly on q^2 ($F_2(x) \rightarrow F_2(x,q^2)$), in conflict with depend slightly on q^2 ($F_2(x) \rightarrow F_2(x, q^2)$), in conflict with
Bjorken's scaling hypothesis.
In particular, as $|q^2|$ increases, the PDFs decrease at large x and Bjorken's scaling hypothesis.
- increase at small $x.$ In other words, the closer we look, the more *soft* partons we see.
- Quantitatively, these scaling violations fall within the realm of perturbative QCD. The DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi) equations describe the evolution of the PDFs with \it{q}^2 .

Why is this important?

Summary

- Deep Inelastic Scattering provides the best window with which to look into the interior of ^a proton.
- At high-energies, DIS simplifies considerably, as the electrons begin to scatter elastically off individual partons. This leads to Bjorken scaling.
- The Callan-Gross relation shows that the partons are spin- $\frac{1}{2}$ particles.
- We can describe the structure functions in terms of quark distribution functions. These PDFs display the richness of QCD, as gluon and sea quark contributions cannot always be ignored.