Lecture 19

- The Parton Model
- Bjorken Scaling
- Parton Distribution Functions

Slides from Sobie and Blokland

Extending the Rutherford Experiment

Recall that based on a surprisingly high number of large-angle events in elastic α Au scattering, Rutherford deduced atomic substructure (i.e., the nucleus)

In a similar fashion, one can investigate the angles involved in e p scattering, particularly in the *deep inelastic scattering* regime where q^2 is large.

The proton was found to have substructure (SLAC, late 1960s). These constituents came to be known as *partons*. Although we now recognize them as quarks and gluons

Three Levels of Behavior

- A low-energy electron scatters *elastically* off a proton. This is relatively simple to understand in terms of the *elastic form factors* $K_1(q^2)$ and $K_2(q^2)$.
- A medium-energy electron usually scatters *inelastically* off a proton. This behavior is quite complicated and it involves the *inelastic structure functions* $W_1(q^2, x)$ and $W_2(q^2, x)$.
- A high-energy electron scatters *elastically* off partons within the proton. This behavior is simpler to understand than inelastic scattering and it involves *parton distribution functions*.

Elastic and inelastic scattering

Parton scattering

• The cross section $e + p \rightarrow e + X$ should reduce to $e + q \rightarrow e + q$ (which is identical to $e + \mu \rightarrow e + \mu$)

$$\frac{d\sigma}{d\Omega dE_3}(e\mu \to e\mu) = \frac{4\alpha^2 E_3^2}{q^4} \left[\cos^2\frac{\theta}{2} - \frac{q^2}{2m}\sin^2\frac{\theta}{2}\right]\delta(\nu + \frac{q^2}{2m})$$
$$\frac{d\sigma}{d\Omega dE_3}(ep \to eX) = \frac{4\alpha^2 E_3^2}{q^4} \left[W_2\cos^2\frac{\theta}{2} + 2W_1\sin^2\frac{\theta}{2}\right]$$

where $\nu = E_1 - E_3$ (initial and final energies)

- For convience define $Q^2 -q^2$ (Q^2 is a negative quantity).
- Relating $e\mu \rightarrow e\mu$ and $ep \rightarrow eX$ cross sections gives

$$2W_1^{point} = \frac{Q^2}{2m} \delta(\nu - \frac{Q^2}{2m}) \qquad \qquad W_2^{point} = \delta(\nu - \frac{Q^2}{2m})$$

• At large Q^2 , inelastic *ep* scattering is viewed as elastic *e*-quark scattering off a free quark inside the proton

Bjorken Scaling

• Bjorken's hypothesis was that the inelastic structure functions, at high energy and *at fixed* x (recall $x = Q^2/2M\nu$), cease to depend on q^2 . More specifically,

 $MW_1(\nu, Q^2) \to F_1(x)$ $\nu W_2(\nu, Q^2) \to F_2(x)$

as $Q^2 \to \infty$

• This behavior, which was confirmed in the 1970s at SLAC, is known as *scaling*.

Callan-Gross relation

- Suppose each parton in the proton carries a fraction x of the proton momentum $p_i^{\mu} = xp^{\mu}$ and $m_i = xM_p$
- Comparing the $e q \rightarrow e q$ and $e q \rightarrow e X$ cross sections gives

$$2W_1^i(point) = e_i^2 \frac{Q^2}{2M_p^2 x} \delta(\nu - \frac{Q^2}{2M_p x}) \qquad \qquad W_2^i(point) = e_i^2 \delta(\nu - \frac{Q^2}{2M_p x})$$

• To get the total contributions of all the partons we need to integrate over all x and weight it by the probability $f_i(x)$ for parti *i* having fraction *x* of the proton momentum

$$W_2(point) = \sum_i \int_0^1 dx f_i(x) e_i^2 \delta(\nu - \frac{Q^2}{2M_p x})$$

• This gives

$$\nu W_2(point) = F_2(x) = x \sum_i e_i^2 f_i(x)$$
 $M_p W_1(point) = F_1(x) = \sum_i e_i^2 \frac{f_i(x)}{2}$

The Callan-Gross Relation

- While Bjorken scaling is a consequence of partons within the proton, it does not restrict the specific type of partons.
- By making an assumption on the spin of an individual parton, Bjorken's scaling functions, $F_1(x)$ and $F_2(x)$ can be related to each other:

Spin-0 partons:
$$\Rightarrow \frac{2xF_1(x)}{F_2(x)} = 0$$

Spin- $\frac{1}{2}$ partons: $\Rightarrow \frac{2xF_1(x)}{F_2(x)} = 1$

• Experiments indicate the partons have spin- $\frac{1}{2}$. $2xF_1(x) = F_2(x)$ is known as the *Callan-Gross relation*. (Gross is one of the 2004 Nobel Prize winners.)

Parton Distribution Functions

- We have now related Bjorken's scaling functions $F_{1,2}(x)$ to the probability distribution functions (hereafter to be called PDFs) $f_i(x)$.
- To a first approximation, if quarks are truly free within the nucleus for sufficiently high-energy probes, the PDFs will be δ-functions. For the proton then,

$$F_2^p(x) = x \left\{ 2\left(\frac{2}{3}\right)^2 \delta\left(x - \frac{m_u}{M}\right) + \left(-\frac{1}{3}\right)^2 \delta\left(x - \frac{m_d}{M}\right) \right\}$$

• More generally, we can incorporate the QCD interactions between quarks by generalizing the PDFs:

$$F_2^p(x) = x \left\{ \left(\frac{2}{3}\right)^2 u(x) + \left(\frac{1}{3}\right)^2 d(x) \right\}$$

Constraints on PDFs

• The precise determination of *u*(*x*) and *d*(*x*) will be left to experiment, but these functions must satisfy certain *sum rules*:

$$\int_{0}^{1} x u(x) \ dx = 2 \int_{0}^{1} x d(x) \ dx$$

(i.e., total momentum carried by *u* quarks is twice that of *d* quarks.)

• Experimental surprise: both sides of the above equation are measured to be 0.36, meaning that only 54% of the proton's momentum is accounted for. What happened to the other 46%?

Gluons

- Since gluons are electrically neutral, they do not contribute to *e p* scattering, but they are evidently hoarding away some of the proton momentum (and spin too).
- This is one way in which QCD adds complexity to the Constituent Quark Model. Another is the presence of additional quarks via *g* → *q q*̄. This leads to a long list of PDFs that will be required to describe the proton accurately:

 $u(x) \quad d(x) \quad s(x) \quad \dots \quad \bar{u}(x) \quad \bar{d}(x) \quad \bar{s}(x) \quad \dots \quad g(x)$

• This is discouraging. Where we once had just one unknown function *F*₂(*x*), we now have 13!

Relating the PDFs

• By distinguishing between *valence* and *sea* quarks, we can clear up most of the clutter. Since the sea quarks are all produced by the same gluon-splitting mechanism,

$$\bar{u}(x) \simeq \bar{d}(x) \simeq \bar{s}(x) \simeq s(x)$$

The *c*, *b*, and *t* quarks are sufficiently heavy as to be ignored.

• For *u*(*x*) and *d*(*x*), we separate the valence and sea contributions, so that

$$u(x) = u_v(x) + s(x)$$
 $d(x) = d_v(x) + s(x)$

 The neutron PDFs are related to the proton PDFs by isospin (i.e., u_vⁿ(x) = d_v^p(x)), so we have many different ways to measure the PDFs.

Proton and Neutral PDFs I

Proton structure function (uud)

$$\frac{F_2^p(x)}{x} = \frac{4}{9} \left[u^p + \overline{u}^p \right] + \frac{1}{9} \left[d^p + \overline{d}^p \right] + \frac{1}{9} \left[s^p + \overline{s}^p \right]$$

Similarly the neutron structure function (udd)

$$\frac{F_2^n(x)}{x} = \frac{4}{9}\left[u^n + \overline{u}^n\right] + \frac{1}{9}\left[d^n + \overline{d}^n\right] + \frac{1}{9}\left[s^n + \overline{s}^n\right]$$

Using isospin invariance

$$u^{p} = d^{n} = u(x)$$
$$d^{p} = u^{n} = d(x)$$
$$s^{p} = s^{n} = s(x)$$

We get

$$\frac{F_2^p(x)}{x} = \frac{4}{9} \left[u + \overline{u} \right] + \frac{1}{9} \left[d + \overline{d} + s + \overline{s} \right]$$
$$\frac{F_2^n(x)}{x} = \frac{4}{9} \left[d + \overline{d} \right] + \frac{1}{9} \left[u + \overline{u} + s + \overline{s} \right]$$

Proton and Neutral PDFs II

The proton consists of 3 valence quarks (u_v, u_v, d_v) accompanied by many quark-antiquark pairs

$$u = u_v + u_s \qquad d = d_v + d_s$$
$$u_s = \overline{u}_s = d_s = \overline{d}_s = s_s = \overline{s}_s = s$$

The quark distributions must give the correct quantum numbers

 $\int [u - \overline{u}] \, dx = 2$ $\int \left[d - \overline{d} \right] \, dx = 1$ $\int [s - \overline{s}] \, dx = 0$

So that

$$\frac{F_2^p(x)}{x} = \frac{1}{9} \left[4u_v + d_v \right] + \frac{4}{3}s$$
$$\frac{F_2^n(x)}{x} = \frac{1}{9} \left[u_v + 4d_v \right] + \frac{4}{3}s$$

Comparison with experiment I

$$\frac{F_2^p(x)}{x} = \frac{1}{9} \left[4u_v + d_v \right] + \frac{4}{3}s$$
$$\frac{F_2^n(x)}{x} = \frac{1}{9} \left[u_v + 4d_v \right] + \frac{4}{3}s$$

The ratio $\frac{F^n}{F^p}$ tends to 1 if s dominates 4 if d_v dominates $\frac{1}{4}$ if u_v dominates

Comparison with experiment II

Difference between proton and neutron functions

$$F_2^p(x) - F_2^n(x) = \frac{x}{3} \left[u_v - d_v \right]$$

Scaling Violations

- At extremely large values of q^2 , it is observed that the PDFs do depend slightly on q^2 ($F_2(x) \rightarrow F_2(x, q^2)$), in conflict with Bjorken's scaling hypothesis.
- In particular, as $|q^2|$ increases, the PDFs decrease at large x and increase at small x. In other words, the closer we look, the more *soft* partons we see.
- Quantitatively, these scaling violations fall within the realm of perturbative QCD. The DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi) equations describe the evolution of the PDFs with q^2 .

Why is this important?

Summary

- Deep Inelastic Scattering provides the best window with which to look into the interior of a proton.
- At high-energies, DIS simplifies considerably, as the electrons begin to scatter elastically off individual partons. This leads to Bjorken scaling.
- The Callan-Gross relation shows that the partons are spin- $\frac{1}{2}$ particles.
- We can describe the structure functions in terms of quark distribution functions. These PDFs display the richness of QCD, as gluon and sea quark contributions cannot always be ignored.