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Who Needs the

�

?

� In the 1960s, there was no compelling experimental evidence
for neutral weak currents.

� Theoretically, Fermi’s four-fermion theory of the weak
interaction suggested charged weak currents, but there was no
neutral current analogue.

� Why, then, would we want to invent a particle without any
experimental or theoretical justification?

� It turns out there was a subtle theoretical justification based on
considering what happens at very high energies
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Why do we need a

�

?

� Violation of a unitarity bound, i.e. a scattering cross-section
which exceeds its maximum theoretical value, is encountered
in the process � � � � � � � � � assuming that it proceeds by
the Feynman diagram:

	�


� � � �

� � � �
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Restoring Unitarity

� In order to make the weak interaction self-consistent, we
require two additional contributions to the � � � � � � � � �

scattering process:

�

� � � �

� � � �

� �

� � � �

� � � �
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The Weak Mixing Angle

� As we’ll see next lecture, many of the parameters of the
electroweak interaction are related to each other. For starters,

�� � �� ��� ���
where

� � is the weak mixing angle, also known as the Weinberg
angle.

� Experimentally,

� ��� � ��� � �� � � �! "#$ " � �$ % �
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Relations Between Coupling Constants

� The vertex factor for interactions with the

� �

will involve a
coupling constant &�' . Just as the

�

and

�

masses are related
by the Weinberg angle, so are the coupling constants:

&' � &� � �� ���

� It gets better. Both &� and &' are related to the QED coupling
constant & 
 :

&� � & 
� �� ��� &' � & 
� �� ��� � �� ���

This is why the weak force is inherently stronger than the
electromagnetic force.
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Feynman Rules for the

�

� The

� �

propagator looks just like that of the

�

:

( ) * &�+, ( -/. -/01 243
5

6 � (  ��

� The

� �

bosons mediate neutral current (NC) weak
interactions. They couple to fermions via

� 798/: � � + �<;= ( ;> � ? �

@
@

� �
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Fermion Couplings to the

�

� The vector and axial couplings ; = and ; > are specified by the
Glashow-Weinberg-Salam model:

@ ;= ;>

	A B C � B C �

D � ( C � B "� �� � � � ( C �

6�E B C � ( FG� �� � ��� B C �

6H ( C � B � G� �� � ��� ( C �

� The

� �

does not change the lepton or quark flavor. The SM has
no flavor-changing neutral currents (FCNC) at tree level.
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Gauge Boson Self-Couplings

� Just like QCD, the electroweak bosons carry (weak interaction)
charge and can interact with each other:

� �
� �

� �JI �

� �
� �

K
L

where

� LI K �

can be
� �I � � , � �I � � �

,

� � �MI � � �

, or

� � � I � � � .
Consult Appendix D of Griffiths for vertex factors.
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N vs.

�

� The

� �

couples to every charged fermion, just like the photon
does. � O � � @ @
This made it difficult to detect the

� �
because at low energies,

the QED effects dominate. Nevertheless, there are always
small weak effects in otherwise electromagnetic systems (e.g.
atomic parity violation).

� Unlike the photon, the

� �
also couples to neutrinos.

� � 	 	

Neutrino experiments are never easy, but at least they allow
us to isolate the weak interaction.
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Example: P B P ( Q

� We first considered this interaction in the context of extending
QED in order to predict hadron production rates. Now we
would like to see how the

� �

-mediated R-channel diagram
compares to the corresponding �-mediated diagram:

� �

$ S � � " S � �

# S @ T S U@
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The Scattering Amplitude

� The amplitude is

V � ) W UYX F ( ) &'" � + �<; Z= ( ; Z> � ? � [ G \
]

^ ( ) * &�+, ( -/. -/0 1 23
5

6 � (  ��
_

`

a W U [ � ( ) &'" �, � ; 
= ( ; 
> � ? � X C \

� At low energies, 6 �cb  �� , and we would eventually find that,
up to some factors of ; = , ;> , and� �� � ��� , the

� �

-mediated
diagram would be like the QED diagram only with d replaced
by

egf h �

.
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At Higher Energies

� If 6 � is not small, we can no longer simplify the
� �

-propagator.
Keeping the full propagator,

V � ( & �'T � 6 � (  �� � i U X F � + �<; Z= ( ; Z> � ? � [ G j &+, ( 6+ 6,  ��

a k UY[ � �, �<; 
= ( ; 
> � ? � X C l

� Assuming that we can neglect all fermion masses, the

-. -01 2m3 part
of the propagator will contribute nothing, since we can write 6

as either n C B n � or n G B n F . Then the /6 factors lead to
combinations like U X F/n F and /n G [ G , which, by the Dirac equation,
are U X F o F and ( o G [ G .
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Moving Along...

V � ( & �'T � 6 � (  �� � i U X F � + � ; Z= ( ; Z> � ? � [ G j

a k U [ � �+ �<; 
= ( ; 
> � ? � X C l

prq Vq � s � W & �'t � 6 � (  �� �
\ �u v i � + �<; Z= ( ; Z> � ? �/n G �, � ; Z= ( ; Z> � ? �/n F j

au v k �+ �<; 
= ( ; 
> � ? �/n C �, �<; 
= ( ; 
> � ? �/n � l

� The traces are best evaluated by first bringing the ; = and ;>

terms together:

�<;w= ( ;> � ? �/n G �, �<;w= ( ;> � ? � � �<;w= ( ;> � ? � �/n G �,

� �<; �= B ; �> �

/n G �, ( ";x= ;> � ?/n G �,
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One can show...

� ... that after taking the traces, writing the momenta in terms ofh

and� ��� �

, and then using Fermi’s Golden Rule, that the cross
section for

� �

-mediated � � � � � @ U@

is

y � $
#{z

& �' h

T | � " h � � (  �� }
� | �<; Z= � � B �<; Z> � � } | � ; 
= � � B �<; 
> � � }

� As it stands, it looks like this cross section blows up whenh � �� O "

. This is much more serious than the infinite cross
section for Rutherford scattering because this

� � � �

divergence
can be traced all the way back to the amplitude.
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Unstable Particles

� The source of the problem is that the kinematics are such that� � � � � � �

is a physically allowable process even without a
subsequent decay to

@ U@

.

� As a result, we need to modify the

� �

-propagator in order to
account for the instability of the

� �

. Here’s what we do:

1. We recall the familiar configuration-space wavefunction of
a stable particle: ~ ��� I � � � � �� � � � 7 ��

2. Since the particle is stable, the probability of finding the
particle somewhere is always equal to 1 since the
wavefunction is normalized:

� � � � � q ~q �/� G � �$
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3. If the particle is unstable, we expect the probability of finding
the particle to fall off with time according to the decay rate

�

� � � � � q ~q �/� G � � � � ��
4. In the particle rest frame, this means that

~ �� I � � � � �� � � � 7 1� � �� 2
5. We then apply the substitution

 �  ( 7 �� to the propagator
of an unstable particle and assume that

�

is sufficiently small
that we can neglect the

� �
term:

$
6 � (  � � $
6 � ( �  ( ) � O " � �

� $
6 � (  � B )  �
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Back to the

�

Peak...

� With the modification to the

� �

propagator,

$
6 � (  �� � $
6 � (  �� B ) � � �

the cross section takes the form

y � $

| � " h � � (  �� } � B � � � � � �

This is known as a Breit-Wigner resonance. Both the height and
width of the resonance peak are determined by the decay
width

� � .

Physics 424 Lecture 21 Page 18



Measurement of the

�

Peak in dimuons
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Final lineshape of the

�

Peak
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More on the

�

Peak

� While QED dominates � � � � � @ U@

at low energies

y �
y�� � " h
�

F
it is the

� �

-mediated process which dominates near the
resonance. At the peak,

y �
y�� �$ t

��� �
� � " � �

� � � can be calculated in the Standard Model by putting a

� �

in
the initial state. When this is done it is found that there cannot
be a 4th lepton generation with a light neutrino.
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Number of light neutrino generations

The

�

can decay into neutrinos

� � � 	 	 which each neutrino
species contributing to the total width.

The cross section is proportional to the decay width.
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The

�

Peak at CERN

� Precise measurements of electroweak parameters (
 � ,

�� ,
and� �� � � � ) also shed light on other Standard Model
parameters such as o� and ox� .

� In the early days at LEP (started in 1989), a number of unusual
systematic effects needed to be accounted for in order to
measure these parameters accurately:

1. Tidal distortions of the ring

2. Water levels in nearby Lake Geneva

3. Correlations with the TGV
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Water levels in nearby Lake Geneva
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Tidal distortions of the ring
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Correlations with the TGV
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Summary

� Unitarity bounds suggest the existence of the

� �
and,

subsequently, the

� �

.

� The electroweak parameters (masses and couplings) are
connected by the Weinberg angle

� � .

� � �

-mediated processes are usually dominated by QED
processes except for

1. Processes involving neutrinos

2. Processes at high energies

� Much can be learned from measurements of the

� �

resonance
peak.
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