
Lecture 22
Electroweak Unification

� Chiral Fermions� EW unification� Higgs particle
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2 Obstacles to Electroweak Unification

� Electromagnetism and the weak force are exactly the same,
only different...

1. While the � is massless, the weak bosons
� �

and

� �
are

quite massive.

2. The QED interaction is purely vector ( � �
), whereas the

weak interaction combines vector and axial terms
( � � �	��
 � �
 � ��

).

� The first difference requires the Higgs mechanism to sort out.
For now, we will merely take encouragement from the
experimental observation that

��� is so large that ��� and ���

are fairly similar in size.

� The second difference is addressed by the GWS theory.
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Hiding the �

� Looking at the

� � �

vertex factor for the

� �
, we can make

this look like a pure vector interaction if we associate part of
the interaction with the fermion wavefunction:� � ����

�� � � � ! � � �� � "# � � ���� $ � � � � ��% &

where ��% ' � ! � � ��� �

At this stage, this is just a definition and notation. Of course,
the subscript

(
suggests that � % is somehow the left-handed

part of � .
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) *

: Chirality vs. Helicity

� � � # + !
! + � 

��,

# ��,
� 


# -/.0 1 23465 � 
- .0 1 2387 5 ��,

# -/.0 1 2 3 45 +
+ - .0 1 237 5

� 

�9,

� For :# +
, we see that � �

behaves just like the
helicity operator

;=< >@?.� � �
is defined as the

chirality operator and it is
only in the massless limit
that helicity and chirality
are the same.
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Chiral Fermions

� Since � �

acts just like the helicity operator

;=< >@? for massless
fermions,

��% ' AB � ! � � �� � #
CD

E
+

if � has helicity F !

� if � has helicity � !

� Similarly, we can project out the right-handed part of a spinor:

��G ' AB � ! F � �� � #
CD

E
� if � has helicity F !

+
if � has helicity � !
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Adjoint Spinors

H What about IKJL and I JM ?IKJL N J OL P Q N J ORS TUWV P XKY P Q N J O P QR S T U Z P XY N IKJ R S T U Z P XY

IKJM N IKJ R S TUV P XY

H By using the identity[ RS TUV P XY \S N R] ^UWV _ P X Z T P XY SK` N RS TUWV P XKY

we can writea bdcef g h IKJ P bR S TUV P XY J N IKJ P bRS T UV P XY RS T UWV P XY JN IKJ RS T U Z P XY P bRS T UV P XY JN IKJL P b JL
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Reinterpreting the Weak Interaction

� Our identity i �� �j k l � � � � AB � ! � � �� � # ���% � � ��%

means that we can think of the charged weak interaction as a
pure vector interaction between left-handed fermions.

Physics 424 Lecture 22 Page 7



Chiral QED

H The non-chiral QED current IKJ P b J , can be expanded out into four chiral
currents ( J N JL Z JM ):a bem h IKJ P b J N T IKJL Z IKJM Y P b T JL Z JM Y

N IKJL P b JL Z IKJM P b JM Z IKJL P b JM Z IKJM P b JL

H Since RS TUV P XY RS TU Z P XKY N R] ^UV T P XY SK` N n

the

op

and

p o

cross terms in the QED current vanish:IKJL P b JM N IKJ RS TU Z P XY P bRS TU Z P XY JN IKJ P bRS TU V P XY RS T U Z P XY JN n
This means that only the

o o
and

p p
terms survive:a bem h IKJ P b J N IKJL P b JL Z IKJM P b JM
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First Intermission

� The charged weak currents, as mediated by the
� �

, couple
left-handed fermions together:i 7� # � q% � � r%i 4� # � r% � � q%

� The electromagnetic current, as mediated by the �, couples
left-handed fermions together, and it also couples
right-handed fermions together:i � 5� # � � r% � � r% � � rG � � rG
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Weak Doublets

� Since the

�

couples left-handed leptons and their neutrinos
together, it seems natural to define the weak doublet:

s% # q � r %

� In terms of s% , the charged weak currentsi 7� # � q% � � r% i 4� # � r% � � q%

can be written as i �� # � s% � � t � s%

where

t 4 ' + !
+ + t 7 ' + +
! +
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Weak Isospin

� The matrices

t 4 ' + !
+ + t 7 ' + +
! +

can be constructed from the Pauli spin matrices via

t �# AB � t Avu � t B �

� This is looking a lot like isospin (i.e., an internal

wx � � �

symmetry). Suppose we define a third t matrix in order to
complete the symmetry:

t y ' ! +
+ � !

Physics 424 Lecture 22 Page 11



A Neutral Current

� From t y

, we can construct a current (with a factor of
AB for

consistency with

i �� ):i y � # � s% � � AB t y s%

# AB � q% � � q% � A B � r% � � r%

� Aha! Here is a neutral current!

� Problem: This neutral current is pure

� � �

and it only
involves left-handed particles. The

� �

, conversely, has a more
complicated � � � ��
 � �
 � ��

structure and, consequently, it also
couples to right-handed particles.
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Hypercharge

� Although we didn’t draw attention to it at the time, there is a
relationship called the Gell-Mann–Nishijima formula which
connects the charge

z

, isospin component
{ y

, baryon number�

, and strangeness

w

, of a quark or hadron:z# { y F AB � � F w�

� The combination

� � F w�

is defined as the hypercharge and is
denoted by

|

. If we propose some sort of weak hypercharge,
we can then generalize the Gell-Mann–Nishijima formula to
the case of weak isospin: z# { y F A B |
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Hypercharge Current

� From

z# { y F AB |

, we can then construct a weak hypercharge
current:i }� # � i � 5� � � i y �# � � � � r% � � r% � � rG � � rG � � � ~ A B � q% � � q% � AB � r% � � r% �

# � � � rG � � rG � � r% � � r% � � q% � � q%

� This current is invariant under weak isospin, as the
right-handed term is untouched and the left-handed terms

� r% � � r% F � q% � � q%

form a weak isospin singlet.
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Groups in The Standard Model

� �6� ��� � �6� � ( �6� � |

� The strong force is described by QCD using a color

wx �� �

symmetry.� The charged currents of the weak force (i.e, the

� �

) make up
2/3 of a weak isospin

wx � � �
symmetry which acts only on

left-handed particles.

� The electromagnetic force is closely connected to a weak
hypercharge

x � !�
symmetry.

� Now we have to explain how the

� �

and � arise.
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Generalizing to Other Weak Doublets

� Although we have set up this formalism in terms of the
electron and its neutrino, we can just as easily use weak
doublets for other leptons

s% � � q � r %

q �� %

q�� t %

or for quarks, provided we account for the CKM rotations
which distinguish the weak eigenstates from the mass
eigenstates:

s% � � �� � %

�
� � %

�
� � %
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Second Intermission

� Let’s stop for another review. For a weak doublet s% , we
construct 3 weak isospin currents� �# AB � s% � � �t s%

i �� correspond to the

� �

-mediated currents, and

i y � is some
sort of left-handed neutral current.

� The electromagnetic current is

i � 5� # ��� A�� B z � � � � �% � � � �% F � � �G � � � �G �

� We define a weak hypercharge current byi }� # � i � 5� � � i y �
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Combining Weak Isospin and Hypercharge

� In the GWS model, the weak isospin current

� � couples to a
triplet of vector bosons

� �

with a coupling strength � � .

� The weak hypercharge current

i }� couples with strength

� �B to a
singlet vector boson

� �

.

� Quantitatively, the interaction terms of

wx � � �% � x � !� } are

� � � �8� � � < � � F � �� i }� � � "

� None of the four fields
� A

,

� B
,

� y

, and

�

correspond directly
to the physical particles

� 4

,

� 7,

� �

, and �.
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Origin of the

F

and �

� With a little bit of algebraic manipulation,� � < � � # i A � � � A F i B � � � B F i y � � � y

# AB ~ i A � F � i B � � ~ � � A � � � � B �

F AB ~ i A � � � i B � � ~ � � A F � � � B � F i y � � � y

# A� B i 4� � � 4 F A� B i 7� � � 7 F i y � � � y

where we define the

� 4
and

� 7by� �� ' A� B ~ � A� � � � B� �
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F

and � Vertex Factors

� From the general interaction

� � � ��� � � < � � F � �� i }� � � "
we see that the coupling involving the

� 7is� � ���� i 7� � � 7

� With i 7� # � q% � � r%

# � q � � AB � ! � � �� r

we find that the

� 7couples to an r and an � q � with a vertex
factor of � � �8�� �� � � � ! � � ��
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Spontaneous Electroweak
Symmetry Breaking

� The details will have to wait until we look at the Higgs
mechanism, but it turns out that the process which endows
mass to the

� �

and the

� �

breaks the
w x � � �% � x � !� }

symmetry.� This electroweak SSB allows the neutral states of the two
symmetries (

� y

and

�
) to mix. Here is where the weak mixing

angle,

  � , comes in:

� �� � # ¡¢£   � £ ¤¦¥   �

�£ ¤ ¥   � ¡¢£   �

� �� y�
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Origin of Electromagnetism

� With the electroweak mixing, the interaction terms for the
neutral particles are

� � � ��� i y � � � y F � �� i }� � � " # � � � ��� £ ¤¦¥   � i y � F � �� ¡¢£   � i }� " � �

� � � �8� ¡¢ £   � i y � � � �� £ ¤¦¥   � i }� " � �

� We will substitute

i }� # � i � 5� � � i y � . If

� �
is to represent the

electromagnetic field, then

i � 5� # � �� £ ¤ ¥   � i y � F � �� ¡¢ £   � i }� "

# § ��� £ ¤ ¥   � i y � F � � ¡¢ £   � ~ i � 5� � i y � �¨

© �� # � � ¡¢£   � # �8� £ ¤ ¥   �
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Origin of the

+

� Using �� # � � ¡¢£   � # �� £ ¤¦¥   �
the

� �

interaction term is

� � � �� ¡¢ £   � i y � � � �� £ ¤¦¥   � i }� " � � # � � � �� ¡¢£   �£ ¤¦¥   � i y �

� �� £ ¤¦¥   �� ¡¢£   � � � i � 5� � i y �� " � �

# � � ��£ ¤¦¥   � ¡¢£   � § i y � �£ ¤¦¥ B   � i � 5� ¨ � �

� From this, we define �8ª # ��£ ¤ ¥   � ¡¢ £   �
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Working Out « � and « �

� Let’s look at the up quark. With

� � �ª § i y � �£ ¤¦¥ B   � i � 5� ¨ � �

# � � �ª� � � � � � �% � � �% � � �£ ¤ ¥ B   � �� � � � � � � � "

# � � �ª� � � � � � � � ! � � �� � � �£ ¤¦¥ B   � �� � � � � � � � "

# � � �ª� � �
¬

­®­¯­®°�� � �
C±@±	±²D

±@±@±@E
!� � ³� £ ¤¦¥ B   �´ µ¶ ·¸¹

� !�´ µ ¶ ·¸º
� �

» ±@±	±²¼
±@±@±@½

�
¾

¿®¿¯¿®À

� In this way, we establish the

� �

vertex factors to Standard
Model fermions of the form 7� �ÂÁB �	��
 � �
 � ��

.
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Couplings to the

+

� In a similar fashion, we can work out how the other fermions
couple to the

� �

:

Ã �
 �


qÄ F AB F AB

Å 7 � AB F �£ ¤¦¥ B   � � AB

Æ8Ç F AB � Èy£ ¤¦¥ B   � F AB

ÆÉ � AB F B y£ ¤¦¥ B   � � AB
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Summary

� We can replace the

� � �

couplings of the weak interaction
with vector couplings between left-handed fermions.

� The

� 4

and

� 7make up 2/3 of an

w x � � �% weak isospin
symmetry. We postulate

� y

as the remaining part.� Meanwhile, a

x � !� } weak hypercharge symmetry couples to a
field

�

.

� From electroweak symmetry breaking, the

� y

and

�

mix to
give us the

�

field ( �) of QED and the

� �

.

� All couplings are related to each other by the weak mixing
angle

  � .
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The Standard Model Higgs

� The Higgs couples to every massive particle in the Standard
Model.
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Higgs Boson Vertices

Ê
Ê

Ê

Ê
Ê

Ê
Ê

Ã
Ã

Ê
� Ë �

� Ë �

Ê
� Ë �

� Ë �

Ê
Ê
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What Makes Us So Sure the Higgs Exists?

� One word: unitarity.

� Just as we inferred the existence of the

� �
and the

� �
based

on the pathological high-energy behavior of certain scattering
cross sections, we find that high-energy divergences in� 4 � 7 � � 4 � 7scattering are cured by the Higgs boson.� Technically, this doesn’t mean that the disease has to be cured
by the Higgs boson, but there had better be something new
before 1 TeV. The Higgs just happens to be the “simplest
something new”.
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Constraints on Ì Ê

� The mass of the Higgs is :�Í # Î Ï Ë �

where Î# � ³Ð ÑÓÒ Ô
is

fixed by

Õ�Ö and

Ï

is an unknown dimensionless coupling co
nstant.

� :Í can’t be too large, lest we violate unitarity.� :Í can’t be too small, lest the weak vacuum become unstable
(i.e., an even lower-energy state exists elsewhere).

� Even at energies below :Í , the Higgs appears in Standard
Model loop diagrams. This allows us to infer the most likely
mass of the Higgs.� The Standard Model Higgs has a mass somewhere between
115 GeV and about 200 GeV. LHC will soon sort this out.
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