Results on Semileptonic B Decays from BaBar

Bob Kowalewski

Currently at

Università degli Studi di Roma

Feb 18, 2005

- Context B decays and the CKM sector
- Theoretical framework for inclusive B decays
- Inclusive b \rightarrow c ℓ v decays and $|V_{ch}|$
- Inclusive $b \rightarrow u v$ decays and $|V_{ub}|$
- B→D^{*}ℓv: FF and |V_{cb}|
 B→πℓv and |V_{ub}|

If I have time....

B decays – a window on the quark sector

- The only 3rd generation quark we can study in detail
- Access 3 of the 4 CKM parameters

CKM picture

 $\lambda,~A,~\overline{\rho}~\text{and}~\overline{\eta}$

At the 1% level :
$$|V_{us}|$$

 $\lambda = |V_{us}| = \sin \theta_C$
 $\lambda = 0.2196 \pm 0.0023$

At the 2% level :
$$|V_{us}|$$

$$A = |V_{cb}| / \lambda^{2}$$

$$A = 0.84 \pm 0.02$$

$$\begin{vmatrix} V_{ub} \\ \rightarrow \overline{\rho} - \overline{\eta} \\ plane \end{vmatrix}$$

Current status in p-n space

- Measurements are consistent with SM
- CP asymmetries from
 B factories dominate
 the determination of <u>n</u>
- Improved precision needed on |V_{ub}| and other angles (α,γ)
- Also need information on B_s oscillations!

Y(4S) experiments

- $e^+e^- \rightarrow Y(4S) \rightarrow B^+B^-$ or $B^0\underline{B}^0$; roughly 50% each
- B nearly at rest ($\beta\gamma \sim 0.06$) in 4S frame; decays overlap
- B energy = ½ c.m. energy; valuable constraint, since σ_F~5 MeV for e⁺e⁻ beams

6

Feb 18, 2005

Our research tools

 PEP-2 performance has been marvelous; almost as good as KEK-B...

	<u>BaBar</u>	Belle
$L_{max} (10^{33}/cm^2/s)$	9.2	13.9
best day (pb ⁻¹)	681	944
total (fb ⁻¹)	244	338

Design was 30 fb⁻¹/year...

Feb 18, 2005

PEP-II luminaries

Feb 18, 2005

Our research tools

- BaBar has recorded >96% of delivered luminosity
- Trigger efficiency for B<u>B</u> events ~ 100%
- 5-layer SVT tracker
- Novel RICH based on total internal reflection (DIRC)
- CsI(TI) crystal calorimeter (e[±], γ)
- RPC and LST chambers in flux return for muon ID
- Angular coverage ~ 92% of 4π in cm frame (challenge for v reco)
- Boost: β_{4S} = 0.56 in lab

Feb 18, 2005

Kowalewski - FNAL seminar

Why we study SL decays

- |V_{ub}| and |V_{cb}| are crucial in testing CKM unitarity and SM mechanism for CP violation
- Presence of a single hadronic current allows control of theoretical uncertainties
 - precise determinations of |V_{ub}| and |V_{cb}|
- SL decays also provide a laboratory for probing our ability to calculate hadronic quantities in the presence of a mix of scales in QCD

Inclusive Decays – the Big Picture

Thorsten Brandt (TU Dresden)

Understanding inclusive SL decays

- The <u>Operator Product Expansion provides a</u> systematic method of separating perturbative from non-perturbative scales
- OPE + Heavy Quark symmetry^[1] → HQE
- Heavy Quark Expansion now calculated to α_s^2 , m_B^{-3} *Essentially all we need to know for b* $\rightarrow clv$
- Coefficients of operators calculated perturbatively (EW and QCD); non-perturbative physics enters through matrix elements of operators

[1] soft gluons cannot probe heavy quark properties

Semileptonic B Decays & HQE

$$\Gamma(B \to X_c \ell \nu) = \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 (1 + A_{EW}) \times \left(\begin{array}{c} \mathbf{z}_0(r) \left[1 + A_3^{pert}(r, \mu) \right] \left(1 - \frac{\mu_{\pi}^2 - \mu_G^2 + \frac{\rho_D^3 + \rho_{LS}^3}{m_b}}{2m_b^2} \right) \\ \mathbf{free-quark rate} \\ - (1 + A_5^{pert}(r, \mu)) 2(1 - r)^4 \frac{\mu_G^2 + \frac{\rho_D^3 + \rho_{LS}^3}{m_b^2} + \mathbf{d}(r) \frac{\rho_D^3}{m_b^3} + O\left(\frac{1}{m_b^4}\right) \right) \\ \end{array} \right)$$

 μ = scale which separates effects from long- and short-distance dynamics

 $r = m_c/m_b$; $\mathbf{z_0}(r)$, $\mathbf{d}(r)$: phase space factors; $A_{EW} = \text{EW}$ corrections; $A^{pert} = \text{pert. corrections} (\alpha_s^j, \alpha_s^k \beta_0)$

- contains b- and c-quark masses, m_b and m_c
- μ_{π}^2 related to kinetic energy of b-quark
- μ_G² related to chromomagnetic operator: B / B^{*} mass splitting
- Darwin term (q_D^3) and spin-orbit interaction (q_{LS}^3) enter at $1/m_b^3$

Several HQE schemes exist; op's and coeff's are scheme dependent Feb 18, 2005 Kowalewski - FNAL seminar

No 1/m_b term!

Inclusive $b \rightarrow c \ell v$

- Measure electron momentum spectrum and mass of hadronic system in SL decay
- Determine *moments* to allow comparison with partonlevel calculations (duality assumed)
- Calculations exist for the following:

Lepton energy spectrum

$$\left\langle E_{l}^{n}\right\rangle_{E_{l}>E_{0}}=\tau_{B}\int_{E_{0}}E_{l}^{n}d\Gamma=f_{n}^{\ell}(E_{0},m_{b},m_{c},\mu_{G}^{2},\mu_{\pi}^{2},\rho_{D}^{3},\rho_{LS}^{3})$$

Mass of hadronic system

$$\langle M_x^n \rangle_{E_l > E_0} = \tau_B \int_{E_0} M_X^n d\Gamma = f_n^x (E_0, m_b, m_c, \mu_G^2, \mu_\pi^2, \rho_D^3, \rho_{LS}^3)$$

Fit for HQE parameters and |V_{cb}|

BABAR PR D69:111104

Electron Energy Spectrum

- BABAR data, 47.4 fb⁻¹ at Y(4S) + 9.1 fb⁻¹ off-peak
- Select events with an electron having p*>1.4 GeV; study spectrum of 2nd electron for p* > 0.5 GeV as fⁿ of charge
 - Unlike-sign events dominated by $B \rightarrow X_c ev$
 - Like-sign events from $D \rightarrow Xev$, B^0 mixing
- As done by ARGUS, CLEO...

BABAR PR D69:111104

Electron Energy Spectrum

- Determine *E_e* spectrum
 - Subtract $B \rightarrow X_u ev$
 - Correct for efficiency
 - Correct for the detector material (Bremsstrahlung)
 - Move from Y(4S) to B rest frame
 - Correct for the final state radiation using PHOTOS
- Calculate $0^{\text{th}}-3^{\text{rd}} E_e$ moments for $E_0 = 0.6 \dots 1.5 \text{ GeV}$

BABAR PR D69:111103

Hadron Mass Moments

- Select events with a fully-reconstructed B
 - Use ~1000 decay chains $\underline{B} \rightarrow D[(n\pi)(mK)]^{-1}$
 - Flavor and momentum of "recoil" B known
- Find a lepton with $E > E_0$ in the recoil-B
 - Lepton charge consistent with the B flavor
 - *m*_{miss} consistent with a neutrino
- All remaining particles belong to X_c
 - Improve m_x with a kinematic fit (require $m_{B2}=m_{B1}$ and $m_{miss}=0$)
 - Gives σ(m_x)= 350 MeV

5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

Events /

 $m_{ES}[GeV/c^2]$

Hadron Mass Moments

• Calculate $1^{st}-4^{th}$ mass moments with $E_0 = 0.9 \dots 1.6$ GeV

 $O(1/m_{\iota}^2)$

Fit Parameters

Calculation by Gambino & Uraltsev (hep-ph/0401063, 0403166)

- Kinetic mass scheme to $O(1/m_b^3)$
- E_{ℓ} moments $O(\alpha_s^2)$
- m_{χ} moments $O(\alpha_s)$
- 8 parameters to determine

 $\left|V_{cb}\right| m_b m_c B(B \rightarrow X_c \ell \nu) \mu_{\pi}^2 \mu_G^2 \rho_D^3$

- 8 moments available with several E_o
 - Sufficient degrees of freedom to determine all parameters without external inputs
 - Fit quality tells us how well OPE works

kinetic

 $ho_{\scriptscriptstyle LS}^{\scriptscriptstyle 3}$

chromomagnetic

spin-orbit

Darwir

- OPE describes BABAR data very well
 - $\chi^2/ndf = 20/15$
 - Separate fits of E_e and m_X moments agree

Feb 18, 2005

Fit Results					
precision on	$ V_{cb} = (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{th}) \times 10^{-3}$				
$ V_{cb} = 2\%$	$B_{c\ell\nu} = (10.61 \pm 0.16_{exp} \pm 0.06_{HQE})\%$	Uncalculated			
precision on	$m_b = (4.61 \pm 0.05_{\text{exp}} \pm 0.04_{\text{HQE}} \pm 0.02_{\alpha_s}) \text{ GeV}$	corrections to 1			
m _b = 1.5%	$m_c = (1.18 \pm 0.07_{\text{exp}} \pm 0.06_{\text{HQE}} \pm 0.02_{\alpha_s}) \text{ GeV}$	kinetic mass scheme with <i>u</i> =1 GeV			
	$\mu_{\pi}^2 = (0.45 \pm 0.04_{\text{exp}} \pm 0.04_{\text{HQE}} \pm 0.01_{\alpha_e}) \text{ GeV}^2$				
	$\mu_G^2 = (0.27 \pm 0.06_{\text{exp}} \pm 0.03_{\text{HQE}} \pm 0.02_{\alpha_s}) \text{ GeV}^2$	 Fitted values consistent with 			
	$\rho_D^3 = (0.20 \pm 0.02_{\text{exp}} \pm 0.02_{\text{HQE}} \pm 0.00_{\alpha_s}) \text{ GeV}^3$	external knowledge			
	$\rho_{LS}^3 = (-0.09 \pm 0.04_{exp} \pm 0.07_{HQE} \pm 0.01_{\alpha_s}) \text{ GeV}^3$	$\chi^2/ndf = 20/15$			

- Impressive agreement between data and theory
- \approx identical results obtained in another renorm. scheme:

Bauer, Ligeti, Luke, Manohar, Trott in hep-ph/0408002 Feb 18, 2005 Kowalewski - FNAL seminar

Inclusive |V_{cb}| status

BaBar result compared with previous measurements:

■ Agrees with value coming from exclusive $B \rightarrow D^* \ell \nu$ decays (from HFAG): $|V_{cb}| = (41.4 \pm 1.0_{expt} \pm 1.8_{theo}) \times 10^{-3}$

Inclusive b→u

- Limiting factor in CKM precision tests; known much less well than |V_{cb}|
- CKM suppressed therefore harder to measure
- Challenge for experiment and theory

- Overview of theory uncertainties
- Overview of measurements
- Prospects

Starting point: HQE

Just like $b \rightarrow c \ell_{v...}$, and with similar accuracy

$$\Gamma(B \to X_u \ell \nu) = (1 + A_{EW}) \frac{G_F^2 m_b^5}{192 \,\pi^3} |V_{ub}|^2 \left[\left[1 + A_3^{pert}(\mu) \left(1 - \frac{\mu_\pi^2 - \mu_G^2}{2m_b^2} \right) - (1 + A_5^{pert}(\mu)) 2 \frac{\mu_G^2}{m_b^2} + O\left(\frac{1}{m_b^3}\right) \right] \right]$$

 μ = scale which separates effects from long- and short-distance dynamics

 $A_{EW} = EW$ corrections; $A^{pert} = pert.$ corrections $(\alpha_s^j, \alpha_s^k \beta_0)$

- ...until limited expt'l acceptance is considered
- Poor convergence of OPE in region where b→clv decays are kinematically forbidden
- Non-perturbative Shape Function must be used to calculate partial rates

Shape Function – what is it?

- light-cone momentum distribution of b quark: $F(k_+)$
- Property of a B meson; universal...but new "subleading" SFs arise at each order in 1/m_b
- Consequences: changes effective m_b, smears spectra

Measuring the Shape Function

- SF can't be calculated: measure it!
- Photon energy distribution in $b \rightarrow s\gamma$ probes b quark directly; same is in $b \rightarrow u l_V$ to O(1/m_b) It's a hard measurement...

SF moments are related to HQE **NEW!** parameters: Bosch-Lange-Neubert-Paz, hep-ph/0402094; Benson-Bigi-Uraltsev, hep-ph/0410080.

Further constrains SF models

Belle

1st and 2nd

determined

2 2 2.5 RAW b-S GAMMA

-0.5

 $k (GeV/c^2)$

-1

0

0.5

moment of SF

4000

 E_{ν}

E^{*} GeV

Theory input for |V_{ub}|

- At present, all $|V_{ub}|$ measurements based on inclusive SL decays use fully differential SL rate calculated to $O(\alpha_S, m_b^{-2})$ (DeFazio and Neubert, JHEP 06:017 (1999))
- Input required includes values for the mean and r.m.s. of the Shape Function.
- In what follows we use as input the parameters determined by a fit (hep-ex/0407052) to the Belle b→sγ spectrum:

 $\underline{\Lambda} = 0.66 \text{ GeV}, \ \lambda_1 = -0.40 \text{ GeV}^2 + \text{associated}$ covariance; $\delta \underline{\Lambda} \sim \delta m_b \approx 80 \text{ MeV}$

Experimental approaches

- Must suppress $b \rightarrow c \ell v$; rate is 50x higher than signal
- Kinematic variables: E_e , $q^2 = (p_e + p_v)^2$ and $m_{X_{ii}}$
- E_e easy, q² more difficult, m_{X_u} hardest

Electron Endpoint

- 80 fb⁻¹ on Y(4S) resonance
- Select e[±] in 2.0 < E_ℓ < 2.6 GeV</p>
 - Larger signal acceptance → smaller theoretical error
- Accurate model of background is crucial (S/N ~ 1/14)
 - Data taken below the Y(4S) resonance determine the light-flavor background

- Fit *E_e* spectrum with *b* → *uℓv*, *B* → *Dℓv*, *B* → *D^{*}ℓv*, *B* → *D^{**}ℓv*...
 Entries >2.2 GeV put in 1 bin to reduce signal model dependence
- Fully correct spectrum for efficiency, resolution, radiation, etc.

Feb 18, 2005

Electron Endpoint

Fully corrected partial BF in Y(4S) frame:

 $\Delta B(B \rightarrow X_u ev, E_e > 2.0 \,\text{GeV}) = (4.85 \pm 0.29_{\text{stat}} \pm 0.53_{\text{sys}}) \times 10^{-4}$

• Translate ΔB into $|V_{ub}|$:

	E_e (GeV)	∆B (10 ⁻⁴)	<i>V_{ub}</i> (10 ⁻³)
BABAR	2.0 –2.6	$\frac{4.85 \pm 0.29_{stat} \pm 0.53_{sys}}{}$	$4.40 \pm 0.13_{stat} \pm 0.25_{sys} \pm 0.38_{theo}$
CLEO	<mark>2.2</mark> –2.6	$2.30 \pm 0.15_{exp} \pm 0.35_{sys}$	$4.69 \pm 0.15_{stat} \pm 0.40_{sys} \pm 0.52_{theo}$
Belle	<mark>2.3</mark> –2.6	$1.19 \pm 0.11_{exp} \pm 0.10_{sys}$	$4.46 \pm 0.20_{stat} \pm 0.22_{sys} \pm 0.59_{theo}$

 Significant decrease in theory uncertainty at lower E_e (SF sensitivity is substantially reduced)

$$E_e vs. q^2$$

• Use $\mathbf{p}_{\nu} = \mathbf{p}_{\text{miss}}$ in addition to $\mathbf{p}_e \rightarrow \text{Calculate } \mathbf{q}^2$

• Given E_e and q^2 , maximum possible m_X^2 is (in B frame)

$$s_h^{\text{max}} = m_B^2 + q^2 - 2m_B \left(E_e + \frac{q^2}{4E_e} \right)$$

+small modifications for Y(4S) frame

- Resolution on p_v modest; some
 b→clv decays smeared to higher q²
- Acceptance ~25% less than cut on
 E_e alone, but S/N=1/2 is much better

- 80 fb⁻¹ on Y(4S) resonance
 - Subtract off-peak data
 - $B \rightarrow D^{(*)}ev$ control samples used to validate v reco
 - Subtract *BB* background normalized by sideband
- Unfolded partial BF: $\Delta B = (4.46 \pm 0.93) \times 10^{-4}$
 - Total b→ulv BF:

$$\mathbf{B} = (2.76 \pm 0.26_{\text{stat}} \pm 0.50_{\text{syst}-0.26\text{SF}}^{+0.21}) \times 10^{-3}$$

Translate to $|V_{ub}|$ $|V_{ub}| = (4.99 \pm 0.48_{exp-0.23SF} \pm 0.22_{OPE}) \times 10^{-3}$ extra sign Feb 18, 2005 Kowalewski - FNAL seminar

$b \rightarrow u \ell v$ in tagged events

• Same recoil technique as for $b \rightarrow c \ell v \langle m_{\chi} \rangle$ moments

- Find a lepton ($p_{\ell} > 1$ GeV) in recoil *B*
- Lepton charge consistent with the B flavor
- *m*_{miss} consistent with a neutrino
- All left-over particles belong to X
 - Improve m_X with a kinematic fit
 - Calculate q² of lepton-neutrino
 - Calculate anything you want!

Charm suppression cuts

- Suppress $b \rightarrow c\ell v$ by vetoing $D^{(*)}$ decays
 - *D* decays usually produce at least one kaon
 → Reject events with K[±] and K_S
 - $B^0 \rightarrow D^{*+} (\rightarrow D^0 \pi^+) \ell^- v$ has peculiar kinematics
 - D^{*+} momentum can be estimated from π^+ alone
 - Calculate $m_v^2 = (p_B p_{D^*} p_{\ell})^2$ for all π^+
 - → Reject events consistent with $m_v^2 = 0$
- Vetoed events are depleted in $b \rightarrow u \ell v$
 - Use them to validate simulation of background distributions

Fitting *m*_X

BABAR data, 80 fb⁻¹ on resonance

• Simple fit in m_X shows clear $b \rightarrow u\ell v$ signal (S/N ~ 2/1 for $m_X < 1.55$ GeV)

Inclusive BF measured to be

$$B(B \to X_u l \nu) = (2.81 \pm 0.32_{\text{stat}} \pm 0.31_{\text{sys}-0.21 \text{theo}}^{+0.23}) \times 10^{-3}$$

$$|V_{ub}| = (5.22 \pm 0.30_{\text{stat}} \pm 0.31_{\text{syst}} \pm 0.43_{\text{theo}}) \times 10^{-3}$$

b → ul⊽ lN

PRELIMINARY

 q^{20} (Gev²/c⁴)

data

 $M_x < 1.7 \text{ GeV/c}^2$

 $b \rightarrow u | \overline{v} OUT$ $b \rightarrow c | \overline{v} + other$

$$m_X vs. q^2$$

- 2-D fit to measure ΔB in { $m_X < 1.7, q^2 > 8$ }
 - Different theory uncertainty than pure m_x cut
 - Good resolution allows clean extraction of ∆B

$$\Delta B = (0.90 \pm 0.14_{\text{stat}} \pm 0.14_{\text{syst}-0.02 \text{theo}}) \times 10^{-3}$$

Signal event fraction into the "box" taken from theory

$$\begin{aligned} \left| V_{ub} \right| &= \left(4.98 \pm 0.40_{stat} \pm 0.39_{syst} \pm 0.47_{theo} \right) \times 10^{-3} & \text{Bauer et al. hep-ph/0111387} \\ \left| V_{ub} \right| &= \left(5.18 \pm 0.41_{stat} \pm 0.40_{syst}^{+0.25}_{-0.20\,theo} \right) \times 10^{-3} & \text{DeFazio-Neubert, JHEP 06:017 (1999)} \end{aligned}$$

Events/Bin

70E

60ł

50

40

30

20

10

0

0

5

10

15

Unfolding the *m_x* distribution

- The shape of the m_x distribution in $b \rightarrow u l_V$ decays carries information about SF parameters ($b \rightarrow uW$ akin to $b \rightarrow s\gamma$)
- Moments can also be used to test OPE, as in $b \rightarrow c l_V$
- Unfolding accounts for resolution, uncertainties in theory input...
- ≩ 0.35 Measured moments: /N(dN/dM_x)/310 RA RA R 0.3 $M_2' = 2^{nd}$ central moment preliminary 0.25 $M_0(GeV)$ 0.2 Value 0.15 M_1 1.86 1.355 ± 0.084 GeV 0.1 M_2' 1.86 $0.147 \pm 0.034 \text{ GeV}^2$ 0.05 M_1 0 5.0 1.584 ± 0.233 GeV 3 0.5 2 25 3.5 O 1.5 4.5 4 M_2 5.0 0.270 ± 0.099 GeV² M_y / GeV/c²

Feb 18, 2005

BaBar Inclusive |V_{ub}| Results

S/N increasing	Technique	$ V_{ub} imes 10^3$
	<i>E</i> _ℓ > 2.0 GeV	$4.40 \pm 0.13_{stat} \pm 0.25_{sys} \pm 0.38_{theo}$
	E_ℓ vs. q^2	$4.99 \pm 0.23_{stat} \pm 0.42_{sys} \pm 0.32_{theo}$
	m_X vs. q^2	$5.18 \pm 0.41_{stat} \pm 0.40_{sys} \pm 0.23_{theo}$
	<i>m_x</i> < 1.55 GeV	$5.22 \pm 0.30_{stat} \pm 0.31_{sys} \pm 0.43_{theo}$
	average	4.80 ± 0.47 , $\chi^2 = 3.5/3$

- Statistical correlation between the m_X and m_X-q² results is 72%. Others correlations negligible
- Each measurement has a somewhat different sensitivity to SF
- Average accounts for correlated systematic/theory errors

BABAR hep-ex/0408075

BABAR hep-ex/0408045

BABAR hep-ex/0408068

Inclusive |V_{ub}| in Perspective

What to look for in future

- Improved precision of |V_{ub}| requires re-evaluation of theoretical uncertainties
 - Precision on SF parameters $\underline{\Lambda}$ and λ_1 will improve, due to
 - better $b \rightarrow s\gamma$ spectra and
 - the use of OPE parameters determined in $b \rightarrow c \ell v$ transitions
 - Power $(1/m_b)$ corrections differ between $b \rightarrow u\ell v$ and $b \rightarrow s\gamma$
 - Quantitative estimates have appeared in literature
 - Weak annihilation may have a large (20%?) effect at high q²
 - Difference between B⁰ and B⁺ needs to be measured
- Expect |V_{ub}| averages to approach 5% uncertainty soon

Exclusive $B \rightarrow X_c \ell v$ decays

- Measure |V_{cb}| using a completely independent theoretical framework from that of inclusive decays
- Test HQET
- Reduce background uncertainty for other measurements, notably |V_{ub}|

$B \rightarrow D^* \ell_V BF and |V_{cb}|$

- Heavy Quark Effective Theory gives us a framework for understanding $B \rightarrow X_c \ell_V$ transitions:
 - FF for decay depends only on q²: universal Isgur-Wise fⁿ
 - FF unknown, but normalization is unity in heavy quark limit (m_b=m_c=∞) at "zero-recoil" point:

• Can be used with both $B \rightarrow D^* \ell_V$ and $B \rightarrow D \ell_V$ decays

What we measure

- $B \rightarrow D^* \ell v$ decay rate is given by form factor $\frac{d\Gamma(B \rightarrow D^* \ell v)}{dw} = \frac{G_F^2 |V_{cb}|^2}{48\pi^3} (F(w))^2 (G(w)) \text{ phase space}$ $D^* \text{ boost in the } B \text{ rest frame}$
 - $\Phi(1) = 1$ in the heavy-quark limit; Lattice calculation gives F (1) = $0.919_{-0.035}^{+0.030}$ Hashimoto et al, PRD 66 (2002) 014503
 - Form of $\Phi(w)$ unknown
 - Parameterized with ρ² (slope at w = 1) and ratios R₁ and R₂ of FFs that are ~ independent of w
 - Use R_1 and R_2 determined by CLEO, PRL 76 (1996) 3898
- Measure $d\Gamma/dw$ to fit $\Phi(1)|V_{cb}|$ and ρ^2

Feb 18, 2005

$B \rightarrow D^* \ell v$ Sample

- BABAR data, 80 fb⁻¹ on Y(4S)
- Find events with a D^{*+} and a lepton
 - $D^{*+} \to D^0 \pi^+$ with $D^0 \to K^- \pi^+, K^- \pi^+ \pi^- \pi^+, K^- \pi^+ \pi^0$
 - 1.2 < *p*_ℓ < 2.4 GeV/*c*
- Background
 - Fake D^* : use $D^* D$ mass difference
 - True D^{*} but not B → D^{*}ℓv: use variable sensitive to what accompanies D^{*}ℓ:

$$\cos \theta_{BY} = \frac{2E_{B}E_{D^{*}\ell} - m_{B}^{2} - m_{D^{*}\ell}^{2}}{2p_{B}p_{D^{*}\ell}}$$

47

BABAR hep-ex/0408027

Determination of $F(1)|V_{cb}|$

• Correct for efficiency $\rightarrow w$ distribution

- Slow pion (from *D*^{*} decays) efficiency depends on *w*
- Fitting dN/dw gives F (1) $|V_{cb}| = (34.03 \pm 0.24_{stat} \pm 1.31_{syst}) \times 10^{-3}$ $\rho^2 = 1.23 \pm 0.02_{stat} \pm 0.28_{syst}$ $B_{D^*\ell\nu} = (4.68 \pm 0.03_{stat} \pm 0.29_{syst})\%$
- FF ratios also under study: from ICHEP, being refined

 $R_1 = 1.328 \pm 0.060 \pm 0.025$ $R_2 = 0.920 \pm 0.048 \pm 0.013$

PRELIMINARY

Determination of $|V_{cb}|$

- BABAR result compares well with existing measurements
 - Results adjusted to use common inputs
- Using $\Phi(1) = 0.91 \pm 0.04$, the world average is $|V_{cb}| = (41.4 \pm 1.0_{expt} \pm 1.8_{theo}) \times 10^{-3}$
 - Agrees with the inclusive measurement

Exclusive $B \rightarrow X_{\mu} \ell \nu$

- New unquenched Lattice calculations of $B \rightarrow \pi \ell v FF$ now available
- New measurement techniques give much better S/N by reconstructing some/all of the non-signal B
- Expect improvements soon
- It will be interesting to compare inclusive and exclusive determinations of |V_{ub}|

Conclusion

- BaBar measurements on semileptonic decays are improving our knowledge of |V_{cb}| and |V_{ub}|:
 - IV_{cb} from inclusive decays: ±2%, HQE validated!
 - |V_{ub}| from inclusive decays: error <10%, can still improve
- Expect significant progress this year on

Performance snapshot

- Tracking: $[\sigma(p_t)/p_t]^2 = (.0013 p_t)^2 + .0045$
- Ecal: σ_E = 3% at 1 GeV, 4.5% at 0.1 GeV
- PID: control samples used to evaluate ε and fake rate

