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ATLAS LAr and Tile Calorimeters

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr EM end-cap (EMEC)

LAr EM barrel

LAr forward calorimeter (FCal)
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Design Physics Requirements

B EM Calorimeters

= Benchmark channels H —» yy and H - ZZ — eeee require high
resolution at = 100 GeV and coverage to low E;

» Db-physics: e reconstruction down to GeV range
= Dynamic range: MIP to Z' — ee at a few TeV

= Design goals for |n| < 2.5
¢ o(E)/E = 8-11 %/NE @ 0.2-0.4/E ® 0.7%
* Linearity better that 0.1%

B Hadron and Forward Calorimeters

= Benchmark channels H > WW — jet jet X and Z/W/t require good
jet-jet mass resolution

» Higgs fusion — good forward jet tagging
» E . Jetresolution and linearity
= Design goals
 o(E)/E = 50%/NE @ 3% for |n| < 3
 o(E)/E = 50%/NE & 10% for 3< |n| <5
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LAr Calorimeters

B EM Barrel
" [n[<1.5

m EMEC
» 14<|n|<3.2

H HEC
= 15<|n|<3.2

B FCal
» 3.1<|n|<4.9

; —[ EM Endcap

EM Barrel

E'a ,25 Forwa rd
/ 0\
Tile Extended =
Barrel

M. Lefebvre H6 Beam Tests Analysis



Electromagnetic Endcap Calorimeter

B EMEC absorber structure

= Pb absorbers arranged radially, no azimuthal cracks
» folding angle and wave amplitude vary with radius
* inner and outer wheels

B EMEC readout structure

= layer O (presampler)
An x Ap = 0.025 x 0.1

= layer 1 (front): = 2to 4 X,
An x Ap = 0.025/8 x 0.1

= |ayer 2 (middle): = 16 to 18 X,
An x Ap = 0.025 x 0.025

= layer 3 (back): = 2to 4 X,
An x Ap = 0.050 x 0.025
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Hadronic Endcap Calorimeter

B HEC absorber structure
= Cu absorbers in the transverse plane
» front and back wheels, 2 samplings each
= EST readout structure

app——— Read-ourt
Vi T— JI T baards
B HEC readout structure f it g 1S >
!I | oo I+ || -1 =
= 15<n[<25 =Ap=01x01 [\ mrl i i
» 25<|n/<3.3 = Ap=0.2x0.2 |
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Forward Calorimeter

B FCal absorber structure
= Cu (FCall) and W (FCal2/3) absorber with cylindrical ionization

chambers parallel to the beam line

B FCal readout structure
» Principal coverage is 3.1 <|n|<4.9and An x Ap = 0.2 x 0.2

4.2 4
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1.8 A

4.8

B.O A
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= Non-projective!

Type

Absorber

Gap
(Hm)

Number of
Electrodes

FCal1

EM

copper

250

12000

FCal2

HAD

tungsten

375

10000

FCal3

HAD

tungsten

500

8000
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LAr Bipolar Signal Pulse Shaping

/ physics pulse

=B
s 0 3T Amplitude carries
B ool £ the information (i)
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Optimal shaping time is an Pulse shape sampled every 25 ns

optimization problem between
electronics noise and pileup noise
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Optimal Filtering Signal Reconstruction

B Optimal filtering

B Signal shape

M. Lefebvre

need known physics signal shape (t)
discrete (At = 25 ns) measurements (signal + noise): y. = SQ. +b.
relies on timing from ATLAS TTC

autocorrelation matrix from noise runs: B; = <bibj > —<bi ><bj>
estimate signal amplitude S with S = Z ay, = a'y

minimize y° (§) :(y—Sg)T B‘l(y—Sg) B
solution is given by the optimal filtering coeffs (OFC) a =

T

9

%
(QI—‘

obtained directly from data (cross talk needs careful
consideration)

or obtained from calibration pulses and detailed knowledge of
difference between signal pulse shape and calibration pulse
shape
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All LAr detectors have calibration pulser system

| [can

. EM K

= |nject on ”phm____ R L~ - Same lp
summing - FEB ; f“ Physics S}
boards __I__Cd N f\ S I I
= . \ Calibration
I_[caI] Lo
® HEC N 1
* Injectat =% s g \% B
calopads [N cold g T e T
v— Premp _ ]
g =" B To use calibration
| [cail SySte m.
m FCal M = Understanding
= |nject on “W]m R L . , ADC_:[phys]/.ADC[caI]
FEB % for fixed lo is key
backplane = Cq4 FEB
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Hadronic Energy Reconstruction

O Hadronic shower consists of

M. Lefebvre

EM energy (eg no—vyy) : O(50%)
Visible non-EM energy (eg dE/dX) : O(25%)
Invisible non-EM energy (eg nuclear breakup) : O(25%)

Escaped energy (eg v) : O(2%)
K B Goal
: = Event-by-event
offline
compensation of
hadronic energy
deposition
= Improve linearity
and resolution

Invisible Energy |

H6 Beam Tests Analysis
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Model II: Local Calorimeter Calibration Algorithm Flow

- . - Electronic and readout effects
Intrinsic Electromagnetic Energy Scale Signal unfolded (nA->GeV calibration)

\ 4 Detector noise suppression
Fundamental Calorimeter Signal Definition: algorithms (optional, can be
Cell Level and Topological Noise Cuts absorbed into cluster formation
algorithm)

Y

Intermediate Calorimeter Signal Definition:
Cell Cluster Formation

Cluster formation in calorimeter
regions (2D->3D->spanning

regions)
v
Advanced Calorimeter Signal Definition: Simple cluster shape analysis ->
Cluster Classification classification

Y Y Y

Apply cluster type specific
calibration functions, dead
material and crack corrections

Electromagnetic Hadronic Non-classified
Cluster Cluster Cluster

Y Y \ 4

[ Final Local Energy Scale Signal

energy flow in event -> re-
calibrate smallest readout units
(cells)!

j Best estimate for general
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Cluster/cell weighting formalism

B Cluster (or cell) weights are used for energy reco
E..c (Cj ) = Z W(Cj A ) E.. = weights depends on

cells or some parameters C; and
clusters some observables A,

B Parameters should be obtained from (validated!) MC

B First look at parameters can be obtained from TB data
through the minimization of

oy (B taen o]

2 2
events (Gleak + G eco )

» |eakage outside the cluster/cell (but in the calorimeter) can be
parameterized from the data

» |eakage outside the detector must be parameterized from MC
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H6 beam tests
B HEC standalone (1998-2001) EM scale

B EMEC standalone (1999) EM scale, presampler
B EMEC-HEC (2002) combined pion response
B FCal standalone (2003) Fcal calibration

B EMEC-HEC-FCAL (2004) combined forward response

B The tests serve multiple purposes, including
= QA/QC during detector construction
= EM scale calibration
» |nvestigate hadronic shower reconstruction scheme
= Study detector interface regions
= Exercise ATLAS electronics chain
= Tests of online/offline monitoring/reconstruction software
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2004 Ha Barrel CTB Combined beam tests

A
e ™

2002 H6
}EMEC/HEC
2004 H6
T E EMEC/HEC/

‘ FCAL
= e S = 2003 H6

EM Endcap _ = FCAL

-
Eﬁ ]

EM Barrel Hadronic Forward | |“

Endcap

Tile Extended
Tile Barrel Barrel ‘
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HEC-EMEC.: beam test configuration

B H6 beam area at the CERN SPS
= e*, u*, mtbeams with 6 GeV < E < 200 GeV
= 90° impact angle: non-pointing setup (not like ATLAS)
= peam position chambers |

= optional additional material upstream = = PR
(presampler studles) "=

EMEC
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EMEC-HEC: H6 beamline

beamline trigger scintillators and
tracking detectors

lcmPb
M1 M2 40cmFe | MWPC2
PS \ MWPC3 MWPC5 .
Hole MWPC4 Bendmg MagneT
F1 o
7 g L _
< Z / ------ /\ --------------- Beam Pipe | Cherenkov
=y \ —
|
Jm B2 w2 w1
‘ ] ‘A B > bending magnet
Concrete / Cryostat  LAr VM Y - Table 9 g
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i s
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EMEC and HEC Signhal Reconstruction Steps

B Relate calibration pulse shape with physics pulse shape
= use electronics model (from simple model to full simulation)
= extract model parameters (various technigues)
B Use predicted physics pulse shape and noise
autocorrelation matrix to obtain OFC
» physics pulse shape not available for all channels!

B Use calibration (ramp) runs to calibrate current
= DAC—>R —>nA
= DAC —» ADCJcal] -» ADCJphys]

B Obtain EM scale from beam test or simulation
= nA - MeV

B Accuracy and channel uniformity goals
* EM:~0.5% and HEC: =~ 1%
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Example: HEC calibration ADC to nA
B Calibration pulse height

= crucial to understand the channel-by-channel variation in the
difference in pulse height and shape between data and calibration
signals

= electronics modeling

calibration signal (points)
electronics function fit (line)

1

0.8

FADC [counts]

0.6

‘80 100 120 140 160 180 200 220_ 240 230

(L?ala - Fit) / Amplitude (%)
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predict signal pulse from calibration pulse to about 1%

data signal (points)
prediction (line)

i 1 1 " 1 1 i 1
20 40 60 80 100 120

Time (ns) Time (ns)
. : T 15 : T
v fitresidua | £ : residua
- £ o5 :: A
: & o i
% o5 M| 3 ﬁ-ﬂd‘ v
...... 5ot \1 ﬂ[ Pasd
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EMEC-HEC: electronic noise

B Electronic noise obtained directly from data

T 1| A |

o0
o

. g |
500 1000
EMEC Channel Number

H6 Beam Tests Analysis

<
c

140

= EMEC: use muon data and remove hit cells
» HEC: use first 5 time samples (which are out of signal region)

e 32T MRV
L.~ # : EM scale o

100 200 300
HEC Channel Number
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EMEC-HEC: Clustering
180 GeV pion

EMEC front (Layer 1)

B Cell-based topological
nearest neighbor
cluster algorithm

= clusters are formed per
s,

= " :;‘3-}. - = I- A
layer using neighbours f%%ﬂ e
-ﬂfﬁ R

-

.’1
e

(that share at least on mfjé%;;% oo
corner) . HH% BocBeeet
" Egseed > 40n0ise q‘fi—"t%@iﬁ 2333300
EMEC middle (Layer 2) EMEC back (Layer 3)
. |EceII| > 2Gnoise nA
. ] HEC 1 front (Layer 1) HEC 1 back (Layer 2) HEC 2 front (Layer 3)
= include neighbour cells __ @
WIth |E oyl > 30,0ise LD TEEe il :
D e o 2ann0s T
|m7; = ; " : bl O : : 10
. 1. m"“ . -\ o |u
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EMEC-HEC: electron response

:—— 3 absorbers —>

[ ¢- dependence of the emec energy, 119 GeV | E |___ weighted mean ¢-resolution vs beam energy |
£1.025 — ~ 35
- = : T = ¥* | ndf 2.667/7
ui = "E' - A 4.37 +0.1104
1.02 E e 3 B 12.58+ 0.8461
C — C 1.654e-08 + 0.1046
1.015— B
= L G, = S ®C
101 - V= =
- 2 \ “beam beam
1.005 -
= 1.5
1= C
0.995 =
0.99— 0.5
0-985 } 1 1 I 1 1 1 | 1 1 1 I 1 1 1 I 1 1 1 l 1 1 1 U : L I 1 1 1 I L 1 1 I 1 1 1 I 1 L 1 [ 1 1 1 I 1 1 1 l

F 80 100 120 140 160
¢cal(256) Ebeam(Gev)

B phi-modulation correction, and resulting phi-resolution
» electric field and sampling fraction non-uniformities
" non-pointing setup
= well understood

o
n
o
B
o
=)
o

-0.4 -0.2 0 0.2 0.4
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EMEC-HEC: electromagnetic scale

B Needed as reference for hadronic calibration

B Obtained from beam test data Include ~ 2% ¢-dependent
_ geometrical response
Ebeam Edep + EIeak < Ereco > + < EIeak >/y corrections
__ —EMEC EMEC | EMEC
where Ereco o Eem = Qe st A D E
| =1.04] + Daae
The leakage is only outside the 3 : - Geant3e
cluster, hence measurable. ltis ‘_{ 1090 - Geant4 e
< 3% for E, ., > 30 GeV 5
ujn i s G W | g - s
OLEMEC . Ebeam _<Eleak> “'E 1 !f ¥ T ar‘T — jt' i
em <| EMEC> S i ,
vis 0-98_ non-pointing setup |’
=(0.430+£0.001+0. MeV/nA I
(0.430+0.001+0 %09) eV/ 0.96
signal shape uncertainties and n dependent L o L .
corrections which have not been applied 0 50 100 150
beam (GeV)

Linearity better than £0.5%
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Events / 3 GeV

EMEC-HEC: pions response

B Use HEC EM scale from previous TB, modified by new
electronics, and EMEC EM scale obtained here

“MEC = (0.430+0.001+0.009) MeV/nA

a E EMEC

EMEC | EMEC
a IV|S

HEC I HEC

HEC __
E — Yem 'vis

o= =(3.27+0.03+0.03) MeV/nA

B Example: 120 GeV pions In EM scale

4
10E

800
700

EIVIEC

3
10

Events / 3 GeV

e, ..'um&«-- ) EEMEC 600 4t HEC
.“ ' , ‘é*.' i . em
T ] I— s o ——— SO0tz ! ha R T . .

400
300 i
200 ‘ ....... —e— TB2002 Data

IQI‘I|IIII|IIII|IIII ||I||IIII|IIII|IIII TTT
&

1 T A 100f "t B i s S
I I I IR I B B MO DR T DT D s S B
20 40 60 80 100 120 140 0 20 40 60 80 100 120 1 40
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Ecnuec EM Scale (GeV)
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E,gc EM Scale (GeV)
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EMEC-HEC: beam energy dependent cluster weights

B Consider 3D topological clusters
B Use cluster energy density as observable
B Use simple weight function, a la H1
Eeo (CF.CH )= D WE(CFLp)ERV™+ D W (CHp) Efe

EMEC HEC

clusters 5 clusters
3 ¥ Data ", on EM scale
2 0.4 ’
W(Cj’p):Cl eXp(—Czp)+C3 ; 0.3l Data r*, on EM scale
§ . Data m, cluster weights
B Significant improvement of % 02 «  Data ", cluster weights
energy resolution
= Results published [NIM A531 j j |
(2004) 481-514] uses fixed C2 o1l N
values 0075 R
= Electronics noise subtracted in 882 | ., , * |

E oo (GEV)
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EMEC-HEC beam energy independent cluster weight

B The knowledge of the beam energy must be taken out!

B First look at beam energy independent cluster weights
= Use beam energy to produce weight parameterization
= Estimate beam energy using cluster energy
= |n general one pion corresponds to many clusters

= Use W(Cj , p) =C, exp(—C2p2 ) +C,

| EMEC Cluster Density Weights | | HEC Cluster Density Weights |
= - Beam Energy = - Beam Energy
o24— e 20 GeV =17~ e 20 GeV
- e 30 GeV @ - 30 GeV
R 40 GeV 2 r 40 GeV
g2 50 GeV 2 1.6~ gg ge¥
a T 60 GeV S - -~ Ge\‘r
© = 80 GeV [ 15 80 Ge
o 2= 120 GeV ol 120 GeV
T - 150 GeV H n 150 GeV
8, .- —— 180 GeV 1400 —— 180 GeV
NS e 200 GeV N 200 GeV
- 1.3
- 1.2
1.1 et
1 L |\|~:\::\.':;:-:|;j;;;\-.\-‘| IS I T T S T I A R N A R N 1: A T T T T T T O O Y T AN Y A B M
0 0.0005 0.0010.0015 0.002 0.0025 0.003 0.0035 0.0040.0045 0.005 0 0.0005 0.0010.0015 0.0020.0025 0.003 0.0035 0.0040.0045 0.005
Energy Density (GeV/cm#3) Energy Density (GeV/cm#3)
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EMEC-HEC beam energy independent cluster weight

B As expected the energy resolution is degraded somewhat,
especially at low energy

Resolution vs. beam energies

_
o 0.3
8 B © Electromagnetic Weights
N B A Cluster Density Weights
Wo.25 © S
o B ¢ Beam Energy Independent Weights
- L
& B
02 ;|
o L
) B o
0.15— X 5
L 9 2
— S o
0.1 A . o .
— F o &
- 8
- : N
0.05—
O_III|III|III|III|III|III|III|III|III|III|I
0 20 40 60 80 100 120 140 160 180 200
Beam Energy (GeV)
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Linearity of
response is not
affected by the
removal of the
knowledge of
the beam
energy
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Cell weights

B \Weights can also be applied at cell level
» thought to be more flexible and more adapted to ATLAS

B cell weights can depend on cluster observables
* energy and energy density
= cluster shape
= distance of cell from shower axis, etc.
B |[nitial attempts (EMEC-HEC NIM) only used energy density
= weights obtained from data
» results comparable to cluster weights

B Recent attempts includes more observables and MC

reco
cell WEceII
em non-em Vis non-em invis escaped
W = EceII T EceII + EceII + EceII
em non-em Vis
+

cell cell
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EMEC-HEC: simulation

B [arge effort on the MC front
= implementing access to MC truth within the Athena framework

B TB MC in Athena will very shortly allow direct comparison
(~rsame code!) of data and MC

Ff————

100 GeV pion
(charged tracks) in
the 2002 EMEC-HEC
beam test setup

GEANT4 in Athena N B
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EMEC-HEC: cell weights

B Initial work on cell weighting promising...
= weights obtained from MC only

| /mnt/scratch/menke/root/clus 12380 mod31.root |

220

"DATA 80 GeV pior o0of MC 80 GeV pion
300 -
- 180
250 160

o /E®"=  13.22% = 6/ET"=  10.87%
: 140
200 2
; 1200
150/ 100
i 80—
100 50;
I 400
50} r
20/
05 0 loienn

B ... but still work in progress
» understand data/MC differences
= understand bias in reconstructing EM showers

= energy linearity
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FCal 2003 beam test configuration

B H6 beam area at the CERN SPS

= use theams with 10 GeV < E <200 GeV
= yse e beams with 5 GeV < E <200 GeV

B Programme ECal FCal2 FCal3

= energy scal atn =3.7

= position scan toward
Inner edge

- |5Bs-i-ti<-)-n;can : ; f l
eénergy scans u U \/J

Evacuated “beam pipe”

D
L*w
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FCal Sighal Reconstruction Steps

B Use direct physics pulse shape accumulation from
beam test to obtain OFC

B Use beam test and/or MC to normalize the energy scale
= ADC[phys] > MeV
» That is, calibration system is not yet used directly

B Accuracy and channel uniformity FCall Pulse Shape, goin 2

= FCal: =~ a few %

B Calibration system used for
FEB stability monitoring

* Investigations in progress w s ol oure v S IR
about use of reflection pulse R R o o

otipn with praihmp
ce of 30 Ohms

Normalized Pulse Height

“data points

S TR I A T |

: i 5 s 8. ;
0 [ Y ~in-black:i
PP I P— - L V. —— T To—— — —
Gﬁ-i e by b e by e b by by
’ 100 200 300 400 500 600
time (ns)
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FCAL energy deposits from 200 GeV r’s

(accumulated)

33
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FCAL energy reconstruction for electrons

175
150 |
125 [

100 |

75

50

25

o 2 4 B 8 10 12 14

Electrons ot Position 4L — EQpt method

Cluster radius (cm)
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Energy sum within a
cylinder of radius R,

More sophisticated
clustering available in
common atlas software
framework (athena)
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FCal electron response 10, 20 and 40 GeV

10Gevic, run3alb 20Gevic, runagd?
L r_ﬂ _@@972_21_4
S|gma 10. 5%
10° '
=
s
10
10
a0 100 180 200 100 200 300 400 500
R core(8cm), ADC count R core(Bcm), ADC count
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40Gevic, rundavd

--------------------------------------

mean= 451 2

______________________________________

sigma=7.1%

200 400 600
R core(8cm), ADC count
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— — — N N
N o ~ O N
& o a o o

GeV) — EOPt meth — RPI clust

o
(@]

Cnergy
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50

25

I ectr llsgr!(? (I:O.ll:’lr;qa)tr;OSII n4 @Igctrcl;r!l:y

/mdf 57 04 / 6
| | | | PT —1.754
o "’*’E*@’Cff@'ﬁs """"" e R = A B A SRl o
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FCal electron energy resolution

3D 40

<

Wy 3B b _ o B

U : Cc a=(3.7610.06)%,

5 | o/E=a® TE DZ  b=(24.5:0.84)vGeV %, |

g c=(145.5+1.6) GeV%
| I N S NN U SN S HN N N
0 20 40 60 a0 100 120 140 160 180 200

E (GeV)
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FCal pion energy resolution

Current pion results involve rather simple analysis:

Reconstruction using EM scale with relative sampling fractions from MC

~0.45
2

£ 0.4
50.35
N

203
EG.ES

..................................................................................
g v

025 0.05 G075 0.1 Q125 0I5 G175 0.2 0.225 0.25
1/sgrt(E}, 1/s3qrt{Ga¥)

=
O T

o(E) (80+10)% (930 + 4)%
E - E(GeV) ©(6.1+06)%® E(GeV) Fitted noise term slightly larger

than measured noise
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EMEC-HEC-FCAL 2004 beam test

B Focus on energy reconstruction in the 2.8 < |n| < 3.2 region
B Address the challenging |n| = 3.2 interface region

absorption length budget

T T T - T T T T T T T T T L I

8]
>
— T

Absorption Length

, extended || b
Tile barrel', - barrel ‘ Hadronic endcap rr’g Forwawd_calorimeter |
[ A \;,‘ .............. "J o S— ;S ........................ N
! 1 i i f :
Yt ot

_ﬂ@ﬁb " EM endcap
0 [ 1 1 L | 1 TN S N Y H Y Sl |

o | > cryostat walls

PO
"

_/

L 1 L] L \'T“"'i——l—"!"'f_-_.f’:-
0 1 2 3:

M. Lefebvre

4 I
Pseudorapidity

o
A

7

—[u];q: I! |||||| I —

S
Y N

Interface around |n| = 3.2
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EMEC-HEC-FCAL 2004 beam test

B Space constraints in cryostat

TAIL CATCHER|

EMEC moduleO (refurbished)

HEC mini-modules (space
constraints in H1 cryostat)

FCall moduleO (refurbished in
Arizona)

FCal2 moduleO (refurbished in
Toronto)

Cold Tailcatcher (Cu-LAr parallel
plate technology) instead of FCal3

New warm tailcatcher behind
cryostat

Mockup of cryostat forward cone and
FCal cold tube
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EMEC-HEC-FCAL: beam test setup

Lifting Tool for Complete Setup

Lifting Tool for
e HEC1 or HEC2

EMEC

ra. 1200

FCAL

FCAL Frame

MP]
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EMEC-HEC-FCAL: data taking

B Two run periods:

= Runl May - July
= Run Il Aug — October
= Some changes to setup between runs

B Energy scans at selected points

B Vertical scans at multiple energies

B Horizontal scans at various heights (all detectors)
B Pion data from 40-200 GeV

B ~ 10/ events, 1TB of physics data

M. Lefebvre H6 Beam Tests Analysis
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EMEC-HEC-FCAL studies underway

« Continued offline software reconstruction coordination

» Testbeam beam elements fully supported in Athena

o Studies of scintillator pedestals

 Studies of beam selection criteria

« BPC Calibration

 BPC Alighment

« Autocorrelation matrix — in database for Run Il

* Pulse Shape Studies

 Calorimeter Noise studies

* OFC determination (awaiting pulse shape from physics data)

 Monte Carlo simulation

H6 Beam Tests Analysis
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EMEC-HEC-FCAL: beam studies

=
=
=

o
[ ]
=
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Relatively small effect (order 100 um).
Correction in progress
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2004 EMEC/HEC/FCAL: Noise

sample RMS, ADC counts

HEC (medium gain)
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factor 2-3
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factor 5
too large!
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EMEC-HEC-FCAL: HEC noise from amplitude and slope

Eventswith S,,,<36

Slope for 32 samples dS,,,/dt, ADC/ns

02 [ ; : 10

Average of 32 samples S,5;, ADC

Events with dS,;/dt<0.036

| Peok Si5=360.58+/-1.8

/]

-200 0 200 400 600
Amplitude Sm, ADC

r| Peak dA/dt=0.3693+/-0.0019 | |

. 0\.2 H‘ Dﬂ .

. 0.6
Derivative S5, ADC/Ns

dT

dA
dT

g—_'? = A, CoS(at)

A, =360.6+1.8ADC

f =2 —1630+1.2kHz
27

Hope: was “one-off’ DC-DC
converter used only in this TB

A= A sin(at) } max(%)—min(—)

max(A) —min(A)

Fix for TB : Either measure noise
phase or do event-by-event ped fit
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EMEC-HEC-FCAL TB Monte Carlo

B Very first (2004/12/08) visualization of 2004
EMEC-HEC-FCAL TB MC using Athena!

100 GeV pion
(charged tracks) in iy TR AT
the 2004 EMEC- AR
HEC-FCAL beam
test setup
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Conclusions

B Extensive H6 beam test programme
= alot of data collected

B Test of electronics calibration method and signal reco
= optimal filter weights
» detailed electronic calibration procedure for ADC to nA
» development of the related software tools

B Hopefully robust EM scale established

B Test of first steps toward an hadronic calibration strategy
= cluster and/or cell weighting

B GEANT4 simulation of beam test setups recently
available in Athena
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Critical tasks

B Persistify 2002 EMEC-HEC data
= fill database with noise and autocorrelations for each cell

B Consolidate the pulse shape analysis software

need a robust OFC producing suite of software
demonstrate the usage of the FCal current calibration system

B Further develop the reconstruction of “final local energy
scale signal”

use Athena tools, like cluster split/merge tools
produce cell level weights depending on cluster quantities
validate with beam test EM clusters and simulation

use GEANT4 in Athena: minimize code difference between data
and simulation analyses

B Combine effort across all beam tests

M. Lefebvre

H6 Beam Tests Analysis
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Critical tasks

B Address the challenging detector overlap regions
= will require specialized techniques for signal reconstruction

B Develop strategies against hardware failures
= simulation of HV problems, dead cells, etc.
* use beam test data and simulation
= develop the related softare
= asses impact on performace

M. Lefebvre H6 Beam Tests Analysis
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Data and Corrections Flow

! RAW DATA
LArDigit LArRawChannel CaloCell
5 ADC Time Samples/ Energy [GeV] Energy [GeV] @
ROD (or emulation) HV corrections,
Optimal Filter, linear “ramp” refined energy scale CLUSTERING
CanCIuster CaloCluster
Energy [Ge Corrected Energy [GeV] CLUST@
Cluster / Cell Offline compensation weights
Detector specific (¢,n) corrections + Tracker, i chambers
Particle ID
7
ely
JETS, <, | USER ANA PARTICLE
ETMISS
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Hadronic Calibration Models

B Modell: Physics object based:

= first reconstruct hadronic final state physics objects (jets, missing
Et) using calorimeter signals on a fixed (electromagnetic) energy
scale (accepting the fact that these are ~30% too low, typically);

= then calibrate the jets in situ using physics events

= a priori using “MC Truth” in simulations for normalization
(presently studied approach in ATLAS)

* Model | is currently the most common approach in ATLAS
physics studies. Itis somewhat fragile, sensitive to
fragmentation modeling, jet finding, etc.

B Model ll : Detector-based objects

= reconstruct calorimeter final state objects (clusters) first and
calibrate those using a “local” normalization (reference local
deposited energy in calorimeter)

= reconstruct physics objects in this space of calibrated
calorimeter signals

= apply higher level corrections for algorithm inefficiencies
determined in situ or a priori, as above

 Model Il has been the focus of our testbeam analysis, and
we are studying it's applicability to ATLAS

M. Lefebvre H6 Beam Tests Analysis 53



EMEC-HEC: electrons energy resolution
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Dead material in front of the FCal

60
. 60
& C had EndCap
E 50 - USIUNNS S
S ! |
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20 - ! %

10 - L |
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350 400 450 500 550 600 650

Want to measure calorimeter resolution with and without “simulated”
upstream material: cryostat bulkhead, poly shielding, pumps

Testbeam calibration of FCal particularly important as in-situ calibration
very difficult. No tracking in front of the FCal
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FCAL electron event display
FCall Single electron 200 GeV/c

Max 19330 Tal 15834
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H6 beamline for 2003 and 2004 beam tests

MI

tail catcher
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