Physics at the Large Hadron Collider

And the ATLAS Physics Programme

Astbury Symposium TRIUMF 16 April 2000

- Physics Motivation
- The Large Hadron Collider
- The LHC Experiments
- Highlights from the ATLAS Physics Programme
 - •Search for the Higgs Boson
 - •Search for Supersymmetry
 - More Searches
 - •Standard Model Physics
- Conclusions

Michel Lefebvre University of Victoria Physics and Astronomy **Physics Motivation** The LHC will allow to explore the structure of matter at the energy frontier and at the energy density frontier

• The physical origin of electroweak symmetry breaking and the origin of mass

Higgs boson

- The physical origin of CP violation
 - Unitary triangle
- Searches beyond the standard model
 - supersymmetry, new gauge bosons, compositeness,...

• Precision measurements of Standard Model parameters

top, beauty, tau, QCD, ...

• The physics of strongly interacting matter at extreme energy densities

• quark-gluon plasma

The Large Hadron Collider

p-p collisions at $\sqrt{s} = 14 \text{ TeV}$ starting in 2005 bunch spacing: 24.95 ns stored energy per beam: 350 MJ initial luminosity: $10^{33} \text{ cm}^{-2}\text{s}^{-1}$ $\int \text{L} dt = 10 \text{ fb}^{-1}$ per year (over 3 years) high luminosity: $10^{34} \text{ cm}^{-2}\text{s}^{-1}$ $\int \text{L} dt = 100 \text{ fb}^{-1}$ per year ultimate reach:

$$L dt = 300 \text{ fb}^{-1} < 10 \text{ years}$$

M. Lefebvre

Astbury Symposium, TRIUMF, 16 April 2000

3

The Large Hadron Collider Canadian Contributions via TRIUMF

The PS and PS Booster: modifications to deliver proton beams with much higher brightness, more strictly controlled emittance and a different bunch spacing

Electronics for the SPS: calibrator modules for the orbit monitor upgrade

Components for the LHC: injection kickers, cleaninginsertion quadrupoles, current calibration equipment

LHC Experiments

LHCb

Second generation dedicated CP violation experiment 10⁴ increase statistics wrt BaBar and Belle Sensitive to all species of B hadrons, including Bs Low luminosity (de-tuned beams: 2. 10³² cm⁻²s⁻¹, N_{bb}=10¹²/y) Optimised detector

forward geometry efficient trigger for hadrons and leptons good proper time resolution (~40 fs) hadron ID (RICH, 1 < p < 150 GeV 5σ k-π separation)

M. Lefebvre

LHC Experiments

CMS

General purpose detectors for p-p at $\sqrt{s} = 14 \text{ TeV}$

Designed to operate at high luminosity 10^{34} cm⁻²s⁻¹, 23 inelastic pp-collisions per bunch crossing about 700 charged particles with P_T > 150 MeV and at initial lower luminosities

Designed to be sensitive to many signatures

 $e, \gamma, \mu, jet, E_T^{miss}, b-tagging,...$

and to more complex signatures tau and heavy flavour from secondary vertices

CMS plans to cover several aspects of the heavy ion programme

- Good mesurement of leptons and photons
 - from a few GeV $(b \rightarrow lv)$ to a few TeV $(W' \rightarrow lv)$
- Good measurement of missing transverse energy
 - calorimeter coverage down to $|\eta| < 5.0$
- Efficient b-tagging
- **Fast** detectors (bunch crossing every 25 ns)
- **Radiation hard detectors and electronics**

The ATLAS Detector

ATLAS and Canada

Activities focused on LAr Calorimetry

4 Major Projects Funded by a Major Installation Grant Endcap Hadronic Calorimeter Forward Hadronic Calorimeter Front-End-Board Electronics Endcap Signal Cryogenics Feedthroughs Important Activities

Radiation Hardness Studies

Physics Studies

New Initiatives

National Computing and OO Software Pixel Detector Contribution

Alberta Carleton CRPP Montréal Toronto TRIUMF UBC Victoria York

- Large production rates
 - LHC is a top, b, W, Z factory
- Mass reach for new particles up to TeV range
- Precision measurements dominated by systematics

ATLAS Physics Programme

Highlights:

Higgs Boson

SM Higgs searches

MSSM Higgs searches

Supersymmetry

squarks and gluinos

SUGRA, gauge mediated SUSY breaking and R-parity breaking models

More Searches

new gauge bosons, extra dimensions, monopoles, technicolour, excited quarks, leptoquarks, compositeness...

Standard Model Physics

QCD processes: hard diffractive, jets, photons, heavy flavours

Electroweak gauge bosons: W mass, gauge boson pair production

B physics: CP violation, Bs oscillation, rare decays, B hadrons

Heavy quarks and leptons: top, electroweak single top quark production, 4th generation quarks

Mass without mass

Can we remove mass from the basic equations of physics ?

The bulk of the mass of ordinary matter comes from the mass of protons and neutrons:

energy associated with quark motion and gluon fields

massless QCD predicts nucleon masses to 10%!

Mass without mass is not necessary in QCD, but it is indispensable in the electroweak sector:

chiral gauge symmetry Higgs mechanism → generates all particle masses → Higgs boson

The SM Higgs properties are well predicted, except its mass!

LEP direct searches: LEP EWWG fit:

m_H > 107.7 GeV m_H < 188 GeV 95% C.L.

M. Lefebvre

QCD jet background

Signal γγ background (irreducible)
$$\begin{split} &\sigma \times BR = 43 \text{ fb } (m_H = 100 \text{ GeV}) \\ &\frac{d\sigma}{dm_{\gamma\gamma}} \sim 1200 \text{ fb/GeV } (m_{\gamma\gamma} = 100 \text{ GeV}) \\ &\frac{\sigma_{\gamma,j}}{\sigma_{\gamma\gamma}} \sim 1000, \quad \frac{\sigma_{j,j}}{\sigma_{\gamma\gamma}} \sim 2 \times 10^6 \quad \text{(reducible)} \end{split}$$

Analysis:

Two isolated γ 's: p_T^{1} >40 GeV, p_T^{2} >25 GeV, $|\eta|$ <2.5

Good \gamma/jet separation: QCD jet background at the level of 10 to 20% of the irreducible $\gamma\gamma$ background

Good mass resolution: σ_m =1.3 GeV for m_H=100 GeV

SM Higgs can be discovered (signal > 5σ) over full mass range with 30 fb⁻¹ (3 years of operation)

In most cases, more than one channel is available

Signal significance is S/B^{1/2} or using Poisson statistics

M. Lefebvre

Maximal extension of the Poincaré group

3D rotations
pure boostsLorentz
Poincare'4D translations
SUSY translationsPoincare'

Leads to the notion of superfield and superspace

 $z^{m} = (x^{\mu}, \theta^{\alpha}, \overline{\theta}_{\dot{\alpha}}) \begin{cases} 4 \text{ bosonic coordinates} \\ 4 \text{ fermionic coordinates} \end{cases}$

A superPoincaré transformation is then a supertranslation in superspace followed by a Lorentz transformation

SUSY actions are invariant under superPoincaré

They are composed of an equal number of bosonic and fermionic degrees of freedom

Mixes fermions and bosons

Exact SUSY \rightarrow there should exist fermions and bosons of the same mass

Clearly not the case: SUSY is broken

So why bother with SUSY?

A Solution to the hierarchy problem

If the Higgs is to be light without unnatural fine tuning, then (softly broken) SUSY particles should have $M_{SUSY} <\sim 1 \text{ TeV}$

GUT acceptable coupling constant evolution

The precision data at the Z mass (LEP and SLC) are inconsistent with GUT's using SM evolution, but are consistent with GUT's using SUSY evolution, if $M_{SUSY} \approx 1$ TeV

A natural way to break EW symmetry

The large top Yukawa coupling can naturally drive the Higgs quadratic coupling negative in SUSY

Local SUSY is SUperGRAvity

Intimately connected to gravity

MSSM Particle Content

		spin						spin	
	0	$\frac{1}{2}$	1				0	$\frac{1}{2}$	1
	$\widetilde{\mathbf{l}}_{\mathbf{L}}$	lL		*			$\widetilde{\mathbf{l}}_{\mathbf{l}}$	lL	
	$\widetilde{\mathbf{l}}_{\mathbf{R}}$	l _R					\widetilde{l}_2	l _R	
	$\widetilde{\boldsymbol{\nu}}_L$	v_{L}					\widetilde{v}_l	vl	
	\widetilde{q}_L^u	$\mathbf{q}_{\mathbf{L}}^{\mathbf{u}}$					\widetilde{q}_1^{u}	$\mathbf{q}_{\mathbf{L}}^{\mathbf{u}}$	
	\widetilde{q}_R^u	$\mathbf{q}_{\mathbf{R}}^{\mathbf{u}}$			ing		\widetilde{q}_{2}^{u}	q ^u _R	
	$\widetilde{\mathbf{q}}_{\mathbf{L}}^{\mathbf{d}}$	$\mathbf{q}_{\mathbf{L}}^{\mathbf{d}}$			reak		\widetilde{q}_1^d	$\mathbf{q}_{\mathbf{L}}^{\mathbf{d}}$	
	\widetilde{q}_{R}^{d}	$\mathbf{q}_{\mathbf{R}}^{\mathbf{d}}$			y bi		\widetilde{q}_2^d	$\mathbf{q}_{\mathbf{R}}^{\mathbf{d}}$	
>		$\widetilde{\mathbf{g}}$	g	\Rightarrow	uetr ⇒	>		$\widetilde{\mathbf{g}}$	g
		$\widetilde{\mathbf{W}}^{+}$	\mathbf{W}^+		'mm			χ_1^+	\mathbf{W}^+
		$\widetilde{\mathbf{W}}^-$	\mathbf{W}^{-}		V sy			χ^+_2	\mathbf{W}^{-}
		$\widetilde{\mathbf{W}}^{0}$	W ⁰		EV			χ_1^-	γ
		$\widetilde{\mathbf{B}}^{0}$	\mathbf{B}^{0}				\mathbf{H}^+	χ_2^-	\mathbf{Z}^{0}
	H_{u}^{+}	$\widetilde{\mathbf{H}}_{\mathbf{u}}^{+}$					\mathbf{H}^{-}	χ_1^0	
	H_u^0	$\widetilde{\mathbf{H}}_{\mathbf{u}}^{0}$					h	χ^0_2	
	H_d^0	$\widetilde{\mathbf{H}}_{\mathbf{d}}^{0}$					Η	χ_3^0	
	H_d^-	$\widetilde{\mathbf{H}}_{\mathbf{d}}^{-}$					Α	χ_4^0	

SUSY breaking

M. Lefebvre

At tree level, all Higgs boson masses and couplings can expressed in terms of two parameters only:

 m_A and $tan\beta = \frac{vev H_u}{vev H_d}$

Note that we have the mixings

 $B^{0}, W^{0} \rightarrow \gamma, Z^{0}$ $\widetilde{W}^{\pm}, \widetilde{H}^{\pm} \rightarrow \chi_{1,2}^{\pm}$ $\widetilde{B}^{0}, \widetilde{W}^{0}, \widetilde{H}_{u}^{0}, \widetilde{H}_{d}^{0} \rightarrow \chi_{1,2,3,4}^{0}$ $\widetilde{l}_{L}, \widetilde{l}_{R} \rightarrow \widetilde{l}_{1}, \widetilde{l}_{2}$ $\widetilde{q}_{L}, \widetilde{q}_{R} \rightarrow \widetilde{q}_{1}, \widetilde{q}_{2}$

With off-diagonal elements proportional to the fermion mass

▶ If SUSY exists at the electroweak scale, a discovery at LHC should be easy

Gluinos and squarks are strongly produced (cross sections as high as a few pb for masses as high as 1 TeV

•they decay through cascades to the Lightest SUSY Particle (LSP) $\tilde{\chi}_1^0$

•combination of jets, leptons, E_T^{miss}

Squarks and Gluinos

Experimental signature:

Several jets with large $P_{\rm T}$ and $E_{\rm T}^{\rm miss}$

Peak of $M_{eff} \, vs \, M_{SUSY}$ for various models

Gluino mass limits

	1 fb ⁻¹	100 fb ⁻¹
$m_{\widetilde{q}} = 2m_{\widetilde{g}}$	1050	1600
$m_{\widetilde{q}} \approx m_{\widetilde{g}}$	1800	2300
$2m_{\widetilde{q}} = m_{\widetilde{g}}$	2600	3600

ATLAS studies of the MSSM Higgs sector concentrate on two scenarios

SUSY particle masses are large, M_{SUSY} = 1 TeV, Higgs boson decay to SUSY particles are kinematically forbidden

Studies in the framework of SUGRA models

• SUSY particles are light and appear in Higgs decays competing with SM decay modes

• Light Higgs particles appear in decays of SUSY particles: search for the $h \rightarrow b\overline{b}$ decay

Important channels in the MSSM Higgs search

The SM decay channelsAssume $M_{SUSY} = 1 \text{ TeV}$
and $m_{top} = 175 \text{ GeV}$ $h \rightarrow b\overline{b}$
 $h \rightarrow \gamma\gamma$
 $H \rightarrow ZZ^* \rightarrow l^+ l^- l^+ l^-$ Assume $M_{SUSY} = 1 \text{ TeV}$
and $m_{top} = 175 \text{ GeV}$ Modes strongly enhanced at large tan β
 $H/A \rightarrow \tau^+ \tau^-$ or $\mu^+ \mu^-$ And $\mu^+ \mu^-$ Other interesting channels
 $H/A \rightarrow t\overline{t}$
 $H/A \rightarrow t\overline{t}$
 $H/A \rightarrow T^+ \tau^-$ or $l^+ l^- \gamma\gamma$ or $l^+ lb\overline{b}$
 $H \rightarrow hh$
 $t \rightarrow H^+ b$, $H^+ \rightarrow \tau v$

Summary of the MSSM Higgs Search

Full parameter space covered, SM and MSSM can be distinguished for almost all cases

Most part of the parameter space covered by at least two channels, except low m_A region (covered by LEP200)

If h discovered at LEP200: A/H should be observable at LHC for $m_A <\sim 2 m_{top}$

If A,h discovered at LEP200: the charged Higgs should be seen at LHC

M. Lefebvre

New Vector Bosons

Related to generators of new symmetry groups in extension of the SM

Discovery potential for W' and Z' for models in which the couplings are the same as for the SM W and Z have been studied:

 $Z' \rightarrow f\bar{f}$ up to $m \sim 5 \text{ TeV}$

Assume no significant Z-Z' mixing

 $W' \rightarrow lv up to m \sim 6 TeV$

M. Lefebvre

Extra Dimensions

Many models attempt to solve the hierarchy problem by postulating the existence of extra dimensions

e.g. Arkani-Hamed, Dimopoulos, Dvali model

SM in 3+1 D, gravitons free to propagate in 3+1+n D, where the n dimensions are compactified. The fundamental mass scale M_s is related to the Planck scale

$$\mathbf{M}_{\mathrm{Pl}}^2 \sim \mathbf{M}_{\mathrm{S}}^{n+2} \mathbf{R}^n$$

where R is the size of the compactified dimensions. Assuming $M_{\rm S}\!\sim\!1$ TeV, then

 $n = 1 \Longrightarrow R \sim R(\text{solar system}) \rightarrow \text{Ruled out!!}$ $n \ge 2 \Longrightarrow R \le 1 \text{mm}$

Sensitivity (100 fb⁻¹): $M_S \sim 7 \text{ TeV}$

More Searches

excited quarks : $q^* \rightarrow q\gamma\gamma$, up to $m \sim 6 \text{ TeV}$ Leptoquarks, up to $m \sim 1.5 \text{ TeV}$ Compositeness, up to from di - jet and Drell - Yan, $\Lambda \sim 40 \text{ TeV}$ needs calo linearity better that 2% Lepton flavour violation : $\tau \rightarrow \mu\gamma$ $10^{-6} - 10^{-7}$ Monopoles, up to $m \sim 20 \text{ GeV}$ Technicolour

Standard Model Physics

W Physics: Triple Gauge Boson Couplings

Probe non-Abelian structure of SU_L(2) X U(1)

Sensitive to new physics

Under general assumptions (Lorentz, P and C), WW γ and WWZ couplings are specified by 5 parameters: $g_1^Z, \lambda_{\gamma}, \lambda_Z, \kappa_{\gamma}, \kappa_Z$

The WWy vertex is related to

W magnetic moment $\mu_W = \frac{e}{2M_W} \left(g_1^Z + \kappa_\gamma + \lambda_\gamma\right)$ W quadrupole moment $Q_W = -\frac{e}{M_W^2} \left(\kappa_\gamma - \lambda_\gamma\right)$ WW suffers from large $t\bar{t}$ background: not studied

Sensitivity from

cross section measurement: λ-type, increase like ŝ P_T and angular distributions: constrain κ-type With 30 fb⁻¹ get about 3000 Wγ and 1200 WZ events

95% C.L.	$\Delta g_Z^1 < 0.008$	
$\lambda_{\gamma} < 0.0025$	$\lambda_{\mathbf{Z}} < 0.0060$	Systematics under study
$\Delta \kappa_{\gamma} < 0.035$	$\Delta \kappa_{\rm Z} < 0.070$	·

M. Lefebvre

Standard Model Physics

W Physics: Triple Gauge Boson Couplings

Jet veto is effective in recovering the qualitative shape of the Born distribution, including the radiation zero

21/07/87

Dear Michel, When we talked about your Wphysics Immst howe been too jet lagged to respond, but I am sure you are aware that a very crucial measurement is a study of WS production is. $PP \rightarrow W+S + X$ The angular correlation of 'H-S' has a very characteristic dip Which "measured" the magnetic moment of the W. I am sure the world would love to know it it is a point particle or notlam also sure there are people in UA2 woodening about doing the experiment - but I thought I ci mention it. Its not eaver, but you may how enough lummouty to see it. Do, you have a CERN VM address, fram still

ALAN & USUM.

All the Best

Har

M. Lefebvre

Astbury Symposium, TRIUMF, 16 April 2000 _____ 00 1800 2000 Ρ_Τ(γ) (GeV)

26

Conclusions

The Large Hadron Collider has a huge potential for physics discoveries...

quark-gluon plasma state properties
new physics in the B system
SM Higgs: full mass range
MSSM Higgs: cover m_A × tanβ plane
SUSY: squarks and gluinos up to m ~ 2 TeV
Many other searches

... and for precision measurements

W, top, Higgs, SUSY parameters, QCD, Bphysics

To fully take advantage of the LHC is a big experimental challenge

Detectors under construction

ATLAS is one of two multi-purpose detector designed to meet the challenge!

Crucial role of TRIUMF in ATLAS and LHC

We also need to be as ready as possible for the unexpected!