An Overview of the ATLAS Liquid Argon Calorimetry

VII International Conference on Calorimetry in High Energy Physics

> November 9-14 University of Arizona Tucson, Arizona

Michel Lefebvre University of Victoria British Columbia, Canada

The ATLAS Detector

Michel Lefebvre (Victoria)

ATLAS Calorimetry

Liquid argon calorimetry for R<2m, divided into 3 cryostats

ATLAS Liquid Argon Calorimetry

- Azerbadjan Republic: Baku
- Brazil: Sao Paulo
- **Canada:** Alberta, British Columbia, Carleton, Montreal, Toronto, TRIUMF, Victoria
- CERN
- France: Annecy, Grenoble, Marseille, Orsay, Paris 6/7, CEA Saclay
- Germany: Heidelberg, Mainz, MPI, Wuppertal
- Italy: Milano
- Kazakhstan: Almaty
- Morocco: Rabat
- **Russia:** ITEP, Lebedev, Novosibirsk, Protvino
- JINR: Dubna
- Slovak Republic: Kosice
- Spain: Madrid
- Sweden: KTH Stockholm
- United States of America: Arizona, BNL, Nevis, Pittsburgh, Rochester, Dallas

37 Institutions, 426 scientists

Shaping, Pileup and Electronic Noise

Inelastic pp cross section 70 mb Average luminosity of 10³⁴ cm⁻²s⁻¹ 2835 active bunches over 3564 LHC clock cycles

23 inelastic events per crossing

Michel Lefebvre (Victoria)

CALOR97 November 10-14 1997

Radiation Environment (1 MeV n_{eq}/cm²/yr)

- Up to 10¹⁶ n/cm²/yr and 2x10⁶ Gy/y in the FCAL
- Less than 10¹² n/cm²/yr and 20 Gy/y at the EM electronics location

• Less than 5x10¹² n/cm²/yr and 50 Gy/y at the Hadronic Endcap electronics location

Michel Lefebvre (Victoria)

EM Barrel Calorimeter and Cryostat

Endcap Calorimeters and Cryostat

Prototypes

Michel Lefebvre (Victoria)

Prototypes

Prototypes

Michel Lefebvre (Victoria)

EM Calorimeter Prototypes Testbeam Results

Michel Lefebvre (Victoria)

CALOR97 November 10-14 1997

Hadronic Endcap Prototype Testbeam Results

Resolution of HEC (pad cluster)

Linearity of HEC (pad cluster)

EM Forward Prototype Electron Testbeam Results

Vertical space resolution vs E^{-1/2}

Position Reconstruction, -3.6° , no absorber

EM Barrel Calorimeter

- 2 half barrels
- 16 modules in each
- 55 tons per half barrel
- Deformations < 4mm
- Tolerance on liquid argon gap better than 50 μm
- 1024 absorbers per half barrel screwed onto 7 SS rings
- Rings placed close to every η = 0.2 to ease cabling of electronics

EM Barrel Calorimeter Accordion Structure

Aim to get an accuracy of 0.1mm on the internal radius and 0.5mm on the external radius

Standard ring piece

Prototype ring

Michel Lefebvre (Victoria)

Measurement of radii, deformations and stresses Deformations agree with predictions

Michel Lefebvre (Victoria)

Michel Lefebvre (Victoria)

Michel Lefebvre (Victoria)

Michel Lefebvre (Victoria)

EM Barrel Absorbers

• Constant absorber thickness; change of lead thickness at $\eta = 0.8$

• Attention paid to: change of geometry between warm and cold reducing mechanical deformation control of the absorber thickness

EM Lead Absorber Thickness

A 10 µm increase in lead thickness produces a 0.4% decrease in signal

Lead for module 0 produced end of 1996

- Thickness controlled online
- Reproducibility of the online measurement is 5µm
- 5µm dispersion within a typical plate
- Overall dispersion is 9µm rms
- Online measurements repeated offline (ultrasonic probes)
- Plates will be sorted to guarantee the required uniformity

EM Barrel Absorber Bending Press

EM Barrel Absorber Gluing Press

Michel Lefebvre (Victoria)

EM Barrel Readout Electrodes

EM Barrel Readout Electrodes

• Large size electrodes have been developed to improve on response uniformity 2 elements in barrel: $0 < \eta < 0.8$ and $0.8 < \eta < 1.475$

• Kapton "E" selected to minimize differences in thermal expansion coefficients. Epoxy glue to bound the layers for good radiation resistance

EM Barrel Electrode Bending Press

Michel Lefebvre (Victoria)

Presampler

21mm total thickness • E 11mm active liquid • granularity of • $\Box \Delta \eta \ x \Delta \varphi = 0.025 \ x$ • sector assembly 32 presampler sectors in ϕ Module Electrodes Cables **16 EM Barrel** $\Box 00$ 000 ന modules in ϕ 2 presampler sectors fixed on the inner rings of each EM module

EM Barrel Module Assembly Jig and Assembly Backbone

EM Barrel Module Tests

EM Barrel Module 0 Status

- Absorbers
 - Lead delivered, thickness measured (9µm rms)
 - Stainless steel delivered, cleaned
 - First absorbers (17) bent and glued
 - Production tooling ready for production
 - Module 0 production starts December 97
- Spacers
 - Production tooling ready for production
 - 30µm rms on 2mm gap thickness
- Readout boards
 - Module 0 electrodes expected spring 98
- External rings
 - Ring 0 constructed
 - Loading tests agree with predictions
- Assembly
 - Jig currently being assembled
- Quality control
 - Test procedure established

EM Endcap Calorimeter

- 2 concentric wheels
- 8 modules in azimuth
- 24 tons
- Deformations < 1.1 mm
- Six support rings
- Outer wheel 1.4 < η < 2.5 768 absorber 1.7 mm lead
- Inner wheel: 2.5 < η < 3.2 256 absorbers 2.2 mm lead

EM Endcap Absorbers

Inner wheel absorber

Michel Lefebvre (Victoria)

EM Endcap Absorber

Michel Lefebvre (Victoria)

EM Endcap

EM Endcap Absorber and Electrodes

Michel Lefebvre (Victoria)

Hadronic Endcap Calorimeter

LAr-Cu sampling calorimeter covering $1.5 < \eta < 3.2$

Composed of 2 wheels per end, 32 modules per wheel		Channel count for both endcaps	
Front wheel:	67 t	Front	1536
	25 mm Cu plates	Middle	1472
Back wheel:	90 t	Back	1408
	50 mm Cu plates	Total	4416

Hadronic Endcap Module

Gap between Cu plates: Front wheel module:

Back wheel module:

8.5 mm

2103 kg 25 mm Cu plates

2811 kg 50 mm Cu plates

Michel Lefebvre (Victoria)

Hadronic Endcap Readout Structure

Pad and EST board thickness 0.685 mm

Hadronic Endcap Module Connection

Inter-module clamping bar

Michel Lefebvre (Victoria)

Forward Calorimeter

	FCAL1	FCAL2	FCAL3
η _{min}	3.0	3.1	3.2
η _{max}	4.9	4.9	4.9
Absorber material	Cu	W	W
Mass (t)	2.3	4.1	4.0
dE/dx sampling %	1.49	1.36	1.68
Depth (λ)	2.6	3.5	3.4
Gap width (mm)	0.25	0.375	0.50
Drift time (ns)	50	75	100

Channel count for both ends: 2822

Hadronic Forward Calorimeter Maquette

Michel Lefebvre (Victoria)

EM Forward Calorimeter Principle

Hadronic Forward Calorimeter Principle

Matrix built of tungsten slugs

Michel Lefebvre (Victoria)

Forward Calorimeter Status

- Components for FCAL1 and FCAL2 modules re-engineered
- Heat loading studies performed
- Radiation tests of components have been performed
- Module 0 prototype by December 97
- Testbeam simulation work ongoing

Material Budget

Michel Lefebvre (Victoria)

Material Budget

Barrel Cryostat (longitudinal view)

Barrel Cryostat (transverse view)

Michel Lefebvre (Victoria)

Signal Feedthroughs

Heat Input

Barrel Heat Leaks (W)

Endcap Heat Leaks (W) Supports

Supports		
susj	pensions	30
stop	opers	8
Radiation		796
Feedthroughs		960
Electronics		
Total	1	1794

axial rails	90
spacers	84
stoppers	36
Radiation	690
Feedthroughs	420
Electronics	1250
Total	2570

Cryogenic System

Cryostats	Barrel	Endcap
Cold vessel volume (m ³)	58	43
Liquid argon volume (m ³)	45	19
Cold vessel weight (t)	12	14
Detector weight (t)	110	219
Full cryostat weight (t)	203	269

Thermal Balance (kW)

Cryostats	7
Cryolines	2
Dewars, valves	2
Pumps	1
Total heat load	12
	1

Max norma	Pressure l conditions	(bar abs.)
	Barrel	Endcap
Po	1.7	1.7
Ph	2.2	2.1
Pb	2.8	2.8

LAr at 1.7 bars

Temperature	92.5 K	
Pressure	1.7 bar	
Liquid density	1360 kg/m ³	
Gas density	9.3 kg/m ³	
Vaporization heat	160 kJ/kg	
Viscosity	2.2x10 ⁻⁴ Pa.s	

Michel Lefebvre (Victoria)

Summary

- Liquid Argon calorimetry plays a central role in ATLAS
 - EM barrel and presampler
 - EM endcap and presampler
 - Hadronic endcap
 - Forward
- Over 7 years of succesful R&D
- ATLAS calorimetry TDR approved: ATLAS is now in its construction phase!
- Modules 0 construction and tests progressing
 - Hadronic Endcap already has 2 modules in beam
- Cryostat designs being finalized