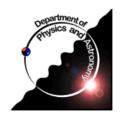
Status of Higgs Particle Searches

Western Regional Nuclear and Particle Physics Conference Chateau Lake Louise, Alberta, 17 February 2001

Theoretical considerations

Standard Model Higgs searches

LEP: status


Tevatron: status and prospects

LHC: status and prospects

Beyond the SM: Supersymmetry

Conclusions

Michel Lefebvre
Physics and Astronomy
University of Victoria

Status of Higgs Particle Searches

Abstract

The Standard Model (SM) of particle physics offers a very successful description of the interactions of the fundamental constituents of matter at the smallest scales and highest energies accessible to current experiments. In particular, the global analysis of electroweak observables yields superb agreement with the SM predictions. A key ingredient of the SM is the postulated existence of a self-interacting scalar field, the Higgs field, with a non-zero vacuum expectation value responsible for the spontaneous electroweak symmetry hiding and the generation of the W and Z mass. Within the SM, it is their interaction with the Higgs field that gives rise to the mass of quarks and charged leptons. An experimentally important by-product of the SM electroweak symmetry hiding mechanism is the existence of the Higgs particle. The minimal supersymmetric extension of the SM yields five Higgs particles.

The search for the Higgs is central to many particle physics efforts.

After a brief theoretical introduction, the status of the search for the Higgs (LEP and Tevatron) and prospects for future discoveries (Tevatron and LHC) are summarized.

Theory: gauge invariance, interactions, mass term

Consider the free Dirac field $L_D = \overline{\psi} [i\gamma^{\mu} \partial_{\mu} - m] \psi$ $\overline{\psi} \equiv \psi^{\dagger} \gamma^0$ invariant under global phase transformation $\psi \xrightarrow{\epsilon} \psi' = e^{-i\epsilon} \psi$

Consider the free Maxwell field $\mathbf{L}_{\mathrm{M}} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu}$ $F^{\mu\nu}(x) \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ invariant under gauge transformation $A^{\mu} \rightarrow A'^{\mu} = A^{\mu} + \partial^{\mu}f \quad \forall f(x)$

Impose Dirac field local phase, U(1)_Q gauge, invariance to the theory Obtain $\mathbf{L} = \overline{\psi} [i\gamma^{\mu} D_{\mu} - m] \psi - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \qquad D_{\mu} = \partial_{\mu} + iq A_{\mu}$

$$\mathsf{L} \; = \; \mathsf{L}_{\; \mathsf{D}} \; + \; \mathsf{L}_{\; \mathsf{M}} \; + \; \mathsf{L}_{\; \mathsf{int}} \qquad \Longrightarrow \qquad \mathsf{L}_{\; \mathsf{int}} \; = - \, q \, \overline{\psi} \gamma^{\; \mu} \, A_{\; \mu} \, \psi$$

Try to add a mass term to the Maxwell field $\longrightarrow \frac{1}{2}M^2A^{\mu}A_{\mu}$

 \longrightarrow This violates U(1)_Q gauge invariance!!

In the SM, the EW interaction is from $U(1)_Y \times SU(2)_I$ gauge invariance

ALL ad hoc mass terms violate gauge invariance in the SM

Theory: Goldstone model

We want: gauge invariance to generate interactions

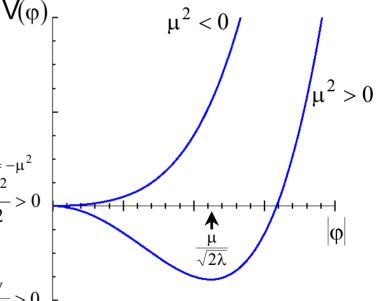
We need: gauge invariant mechanism to generate mass

hidden symmetry (spontaneous symmetry breaking)

Consider a model where the equilibrium state is not unique nature makes a choice, hiding the invariance of the theory equilibrium state: all fields null, except one $\varphi(x)\neq 0$ Lorentz invariance $\longrightarrow \varphi(x)$ is a scalar

Goldstone model: consider

$$\mathbf{L} = (\partial_{\mu} \varphi)^* (\partial^{\mu} \varphi) - \mathbf{V}(\varphi) \qquad \varphi(x) \text{ is a complex scalar}$$


$$V(\varphi) = -\mu^2 \varphi^* \varphi + \lambda (\varphi^* \varphi)^2 \qquad \lambda > 0$$

$$\mu^2 < 0$$
 Self-interacting Klein-Gordon field where $m^2 = -\mu^2$

$$\mu^2 > 0$$
 V(ϕ) $|_{min} = -\frac{\mu^2 v^2}{4} \Rightarrow |\phi|^2 = |\phi_0|^2 = \frac{\mu^2}{2\lambda} \equiv \frac{v^2}{2} > 0$

The equilibrium is characterized by $\Phi_0 = \frac{\mathbf{v}}{\sqrt{2}}e^{i\theta}$

Nature spontaneously chooses, say, $\theta = 0 \rightarrow \phi_0 = \frac{v}{\sqrt{2}} > 0$ always possible because of global U(1) phase invariance

Theory: Goldstone model (continued)

We write $\varphi(x) = \frac{1}{\sqrt{2}} [v + \sigma(x) + i\eta(x)]$ where $\sigma(x)$ and $\eta(x)$ measure the deviation of $\varphi(x)$ from equilibrium. We get

$$\begin{split} L &= \frac{1}{2} \left(\partial_{\mu} \sigma \right) \! \left(\partial^{\mu} \sigma \right) \! - \mu^2 \sigma^2 + \frac{1}{2} \left(\partial_{\mu} \eta \right) \! \left(\partial^{\mu} \eta \right) \! + L_{int} \\ L_{int} &= -\lambda v \sigma \left(\sigma^2 + \eta^2 \right) \! - \frac{1}{4} \lambda \left(\sigma^2 + \eta^2 \right)^2 \end{split}$$

We can interpret
$$\sigma \to \text{real Klein - Gordon field} \qquad \frac{1}{2}m^2 = \mu^2$$
 $\eta \to \text{real Klein - Gordon field} \qquad m_{\eta} = 0 \qquad \text{Goldstone}$
boson field

and ndf do add up
$$\longrightarrow$$
 Initially: complex $\phi \to 2$
After : real massive $\sigma \to 1$
real massless $\eta \to 1$

No truly massless Goldstone bosons are observed in nature

 π^0 , π^+ , π^- come pretty close...

We need a hidden symmetry mechanism that does not generate physical massless Goldstone bosons

n.d.f

Theory: Higgs model

Generalize the Goldstone model to be invariant under U(1) gauge

transformation

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} + iqA_{\mu}$$

$$L = (D_{\mu} \varphi)^* (D^{\mu} \varphi) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - V(\varphi) \qquad V(\varphi) = -\mu^2 \varphi^* \varphi + \lambda (\varphi^* \varphi)^2 \qquad \lambda > 0$$

$$V(\varphi) = -\mu^2 \varphi^* \varphi + \lambda (\varphi^* \varphi)^2 \qquad \lambda > 0$$

Invariant under

$$\varphi \xrightarrow{\varepsilon(x)} \varphi' = e^{-i\varepsilon(x)} \varphi$$

$$A^{\mu} \xrightarrow{\varepsilon(x)} A'^{\mu} = A^{\mu} + \frac{1}{q} \partial^{\mu} \varepsilon$$

 $\mu^2 < 0$ Scalar electrodynamics with self-interacting Klein-Gordon field where $m^2 = -\mu^2$

$$\mu^{2} > 0 \longrightarrow V(\phi)|_{\min} = -\frac{\mu^{2}v^{2}}{4} \Rightarrow |\phi|^{2} = |\phi_{0}|^{2} = \frac{\mu^{2}}{2\lambda} \equiv \frac{v^{2}}{2} > 0$$

The equilibrium is characterized by $\varphi_0 = \frac{V}{\sqrt{2}}e^{i\theta}$

Nature spontaneously chooses, say, $\theta = 0 \rightarrow \phi_0 = \frac{V}{\sqrt{2}} > 0$ always possible because of global U(1) phase invariance

again, use
$$\varphi(x) = \frac{1}{\sqrt{2}} [v + \sigma(x) + i\eta(x)]$$

Theory: Higgs model (continued)

Obtain

and n.d.f would NOT add up Initially: $\begin{cases} \text{complex } \phi & \to 2 \\ \text{real massless } A^{\mu} & \to 2 \end{cases} \to 4$ L contains an unphysical field which can be eliminated through a gauge transformation yielding the form $\begin{cases} \text{complex } \phi & \to 2 \\ \text{real massless } A^{\mu} & \to 2 \end{cases} \to 5$

n.d.f

$$\varphi(x) = \frac{1}{\sqrt{2}} [v + \sigma(x)]$$
 unitary gauge

$\eta(x) \longrightarrow$ would-be Goldstone boson field

Theory: Higgs model (end)

In this gauge, we obtain

$$\mathbf{L} = \frac{1}{2} (\partial_{\mu} \sigma) (\partial^{\mu} \sigma) - \mu^{2} \sigma^{2} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} (q v)^{2} A^{\mu} A_{\mu} + \mathbf{L}_{int}
\mathbf{L}_{int} = -\lambda v \sigma^{3} - \frac{1}{4} \lambda \sigma^{4} + \frac{1}{2} q^{2} A^{\mu} A_{\mu} (2v \sigma + \sigma^{2})$$

can interpret

$$\sigma \rightarrow \text{real Klein - Gordon field} \qquad \frac{1}{2}m^2 = \mu^2 \qquad \qquad \text{n. d. f}$$

$$A^{\mu} \rightarrow \text{real Proca field} \qquad M_A = qv \qquad \text{Initially:} \qquad \begin{cases} \text{complex } \phi & \rightarrow 2 \\ \text{real massless } A^{\mu} & \rightarrow 2 \end{cases} \rightarrow 4$$

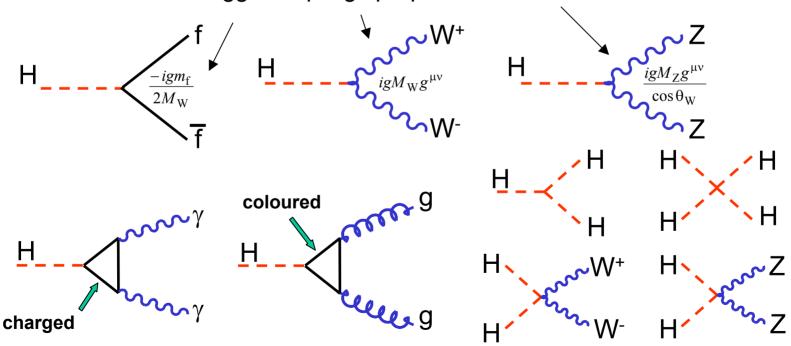
$$\text{and n.d.f do add up} \qquad \qquad \text{After} \qquad \begin{cases} \text{real massive } \sigma & \rightarrow 1 \\ \text{real massive } A^{\mu} & \rightarrow 3 \end{cases} \rightarrow 4$$

The massless Goldstone boson field $\eta(x)$ has disappeared from the theory and has allowed the $A^{\mu}(x)$ field to acquire mass!!

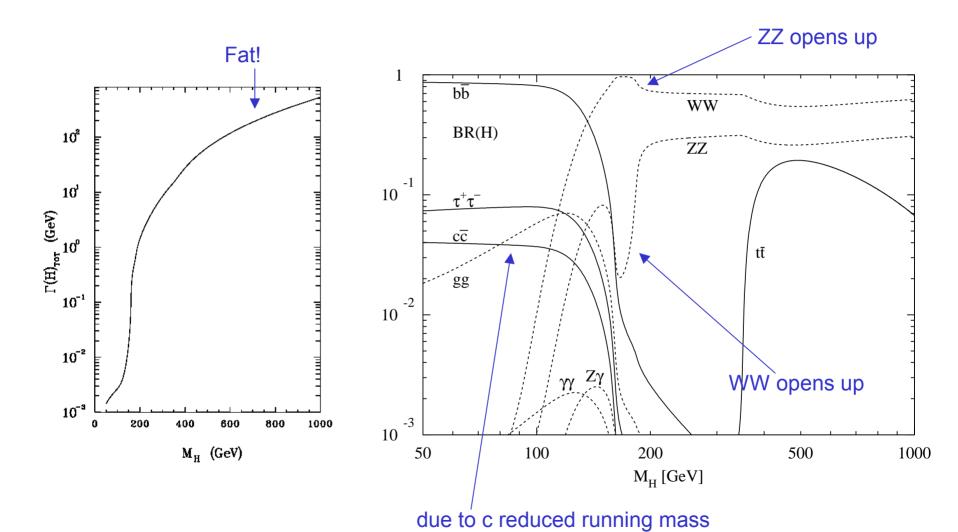
$$\sigma(x)$$
 is a Higgs boson field

vector boson acquire mass without spoiling gauge invariance → Higgs mechanism

and we get a prescription for the interactions between σ and A^{μ} !

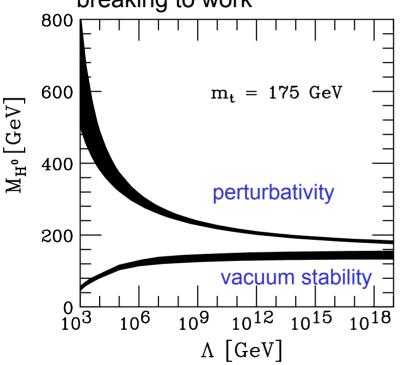

SM Higgs Interactions

SM Higgs mechanism with $U(1)_Y \times SU(2)_L$ gauge

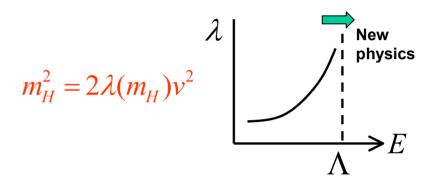

 $\varphi(x)$ is a complex doublet \longrightarrow W⁺, W⁻, Z acquire mass left with one massive Higgs boson $v = (\sqrt{2}G_F)^{-1/2} = 246 \,\text{GeV}$

 $\varphi(x)$ coupling with massless fermion fields \longrightarrow fermion masses

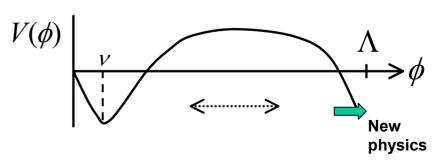
Higgs couplings proportional to mass $g^2 = 4\sqrt{2}G_F M_W^2$


SM Higgs decays

Theoretical constraints on $M_{\rm H}$

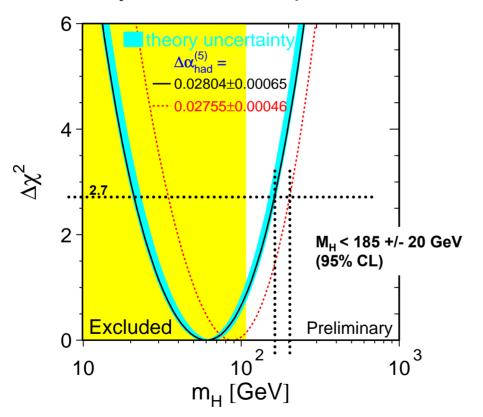

$M_{\rm H}$ is a free parameter of SM

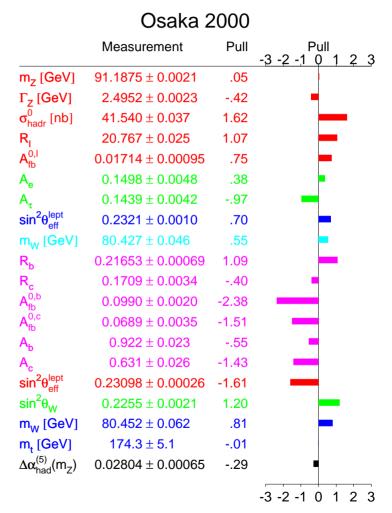
but it must lie in a limited region for electroweak symmetry breaking to work



130 GeV ≈< $M_{\rm H}$ ≈< 180 GeV then, in principle consistent with Λ = $M_{\rm PL}$

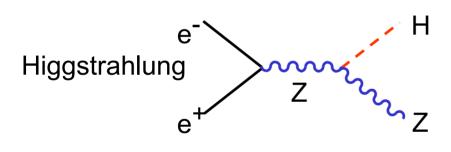
 $M_{\rm H}$ is too large: the higgs self-coupling blows up at some scale Λ



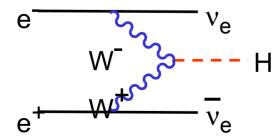

 $M_{\rm H}$ is too small: the higgs potential develops a second (global!) minimum values of the scalar field of the order of Λ


Experimental constraints on M_H

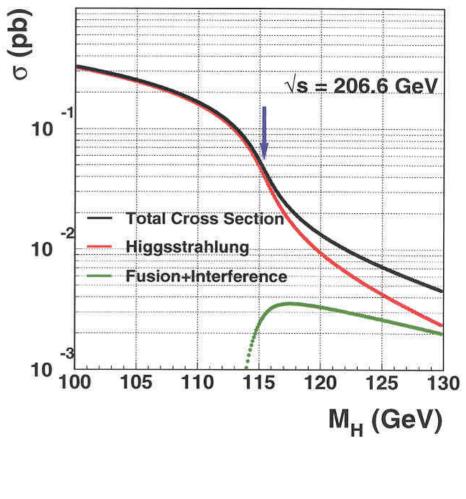
H enters into loops... Global fits to precision EW data where $M_{\rm H}$ is the only unconstrained parameter

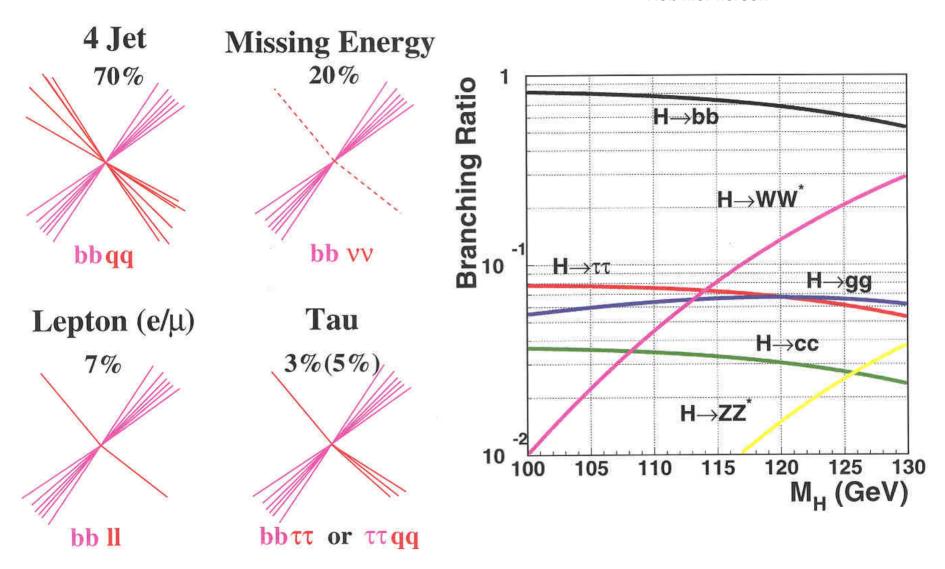


Large Electron Positron Collider



LEP data sets and SM Higgs production


Stage	\sqrt{s}	Year	Luminosity
LEP 1	$pprox M_{{f Z}^0}$	1989-1995	$175{\rm pb}^{-1}$
LEP 1.5	130-140 GeV	1995	$5\mathrm{pb}^{-1}$
	161 GeV	1996	$10\mathrm{pb}^{-1}$
	172 GeV	1996	10 ${ m pb}^{-1}$
LEP 2	183 GeV	1997	$55\mathrm{pb}^{-1}$
	189 GeV	1998	$180~\mathrm{pb}^{-1}$
	192–202 GeV	1999	230 pb $^{-1}$
	200–209! GeV	2000	220 ${ m pb}^{-1}$



Rob McPherson

SM Higgs topologies

Rob McPherson

LEP Higgs candidates

LEP Higgs working group, 03/11/2000

Table 3: Details about the most significant candidate events in ALEPH.

Cand.	Sample	Channel	\sqrt{s} (GeV)	Mass (GeV/c^2)	s/b
1	Ref.	Hqq	206.7	114 ± 3	4.7
2	Ref.	Hqq	206.7	112 ± 3	2.3
3	Ref.	Hqq	206.7	110 ± 3	0.9
4	Ref.	He ⁺ e ⁻	205.3	118 ± 2	0.6
5	Ref.	$H\tau^+\tau^-$	208.1	115 ± 2	0.5
ex æquo	Ref.	Hqq	206.5	114 ± 3	0.5

DELPHI

L3

Table 5: Details about	the most	significant	candidate	events	in	L3

Table 4.	Details about	the most	gignificant	candidate	avante in	DELPHI
Table 4:	Details about	the most	signincant	candidate	evenus m	ווו ווווו

Cand.	Sample	Channel	\sqrt{s} (GeV)	Mass (GeV/c^2)	s/b	
\Rightarrow	New	$H\nu\bar{\nu}$	206.6	114.4	2.05	
2	New	$H\nu\bar{\nu}$	208.2	113.8	0.49	
3	New	Hqq	206.7	114.6	0.47	
4	Ref	$H\nu\bar{\nu}$	208.4	111.3	0.22	

Cand.	Sample	Channel	\sqrt{s} (GeV)	Mass (GeV/c^2)	s/b
1	Ref.	Hqq	206.7	97.2	0.45
2	Ref.	Hqq	206.7	114.3	0.40
3	New.	He ⁺ e ⁻	205.4	112.4	0.27
4	New.	Hqq	206.7	110.1	0.22
5	Ref.	$H\tau^+\tau^-$	206.7	108.9	0.20

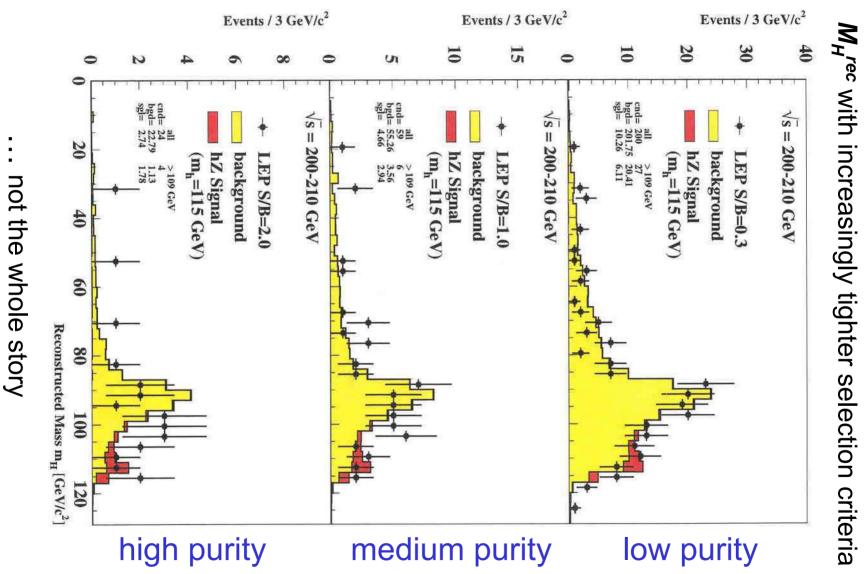

OPAL

Table 6: Details about the most significant candidate events in OPAL. The event marked with *** was collected on October 29 and is not included in the new sample.

Cand.	Sample	Channel	\sqrt{s} (GeV)	Mass (GeV/c^2)	s/b
1	Ref.	Hqq	205.4	112.6	0.52
2	***	Hqq	206.6	110.5	0.40
3	New.	$H\nu\bar{\nu}$	205.4	104.0	0.32
4	New.	$H\nu\bar{\nu}$	206.4	112.2	0.25
5	Ref.	$H\nu\bar{\nu}$	206.8	108.2	0.22

LEP reconstructed Higgs mass spectra

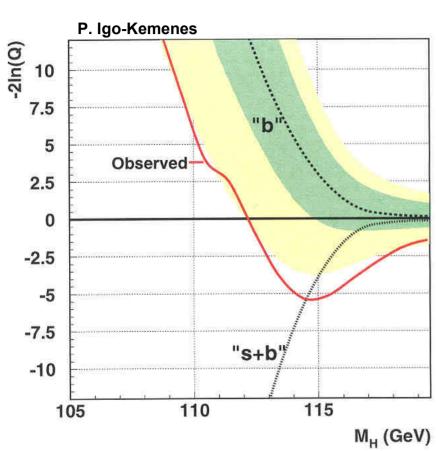
Combining LEP SM Higgs searches

4 decay modes 4 detectors many \sqrt{s} order of 100 "channels" with different sensitivities

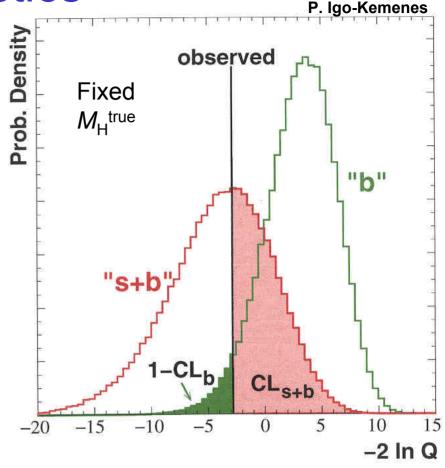
 $M_{
m H}^{
m rec}$ Reconstructed Higgs mass G Global discrimination variable for each event in each channel (b-tag, kinematics, jet properties)

$$s_i \left(\!\! M_{
m H}^{
m true}
ight) \ b_i \ N_i$$

 $\begin{array}{ccc} \text{MC signal} & s_i \Big(M_{\text{H}}^{\text{true}} \Big) \\ \text{MC backgroung} & b_i \\ \end{array} \hspace{0.5cm} \text{i is a bin in } \Big(M_{\text{H}}^{\text{rec}}, G \Big) \text{ space for each channel}$


$$L(x) = \prod_{i} \frac{\exp(-x_{i})x_{i}^{N_{i}}}{N_{i}!}$$

$$Q(M_{H}^{true}) = \frac{L(s+b)}{L(b)} \quad \text{set of all events: } s+b \text{ or } b \text{ ?}$$


$$Q(M_{\rm H}^{\rm true}) = \frac{L(s+b)}{L(b)}$$

$$-\ln Q = \sum_{i} s_{i} - \sum_{i} N_{i} \ln \left(1 + \frac{s_{i}}{b_{i}}\right)$$

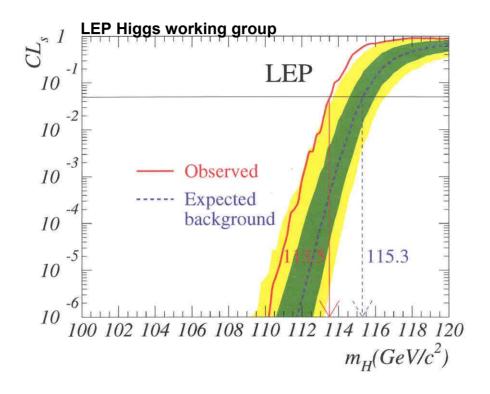
Statistics


expected curves using MC instead of data

 $-CL_b$ measures compatibility with "b" CL_{s+b} measures compatibility with "s+b"

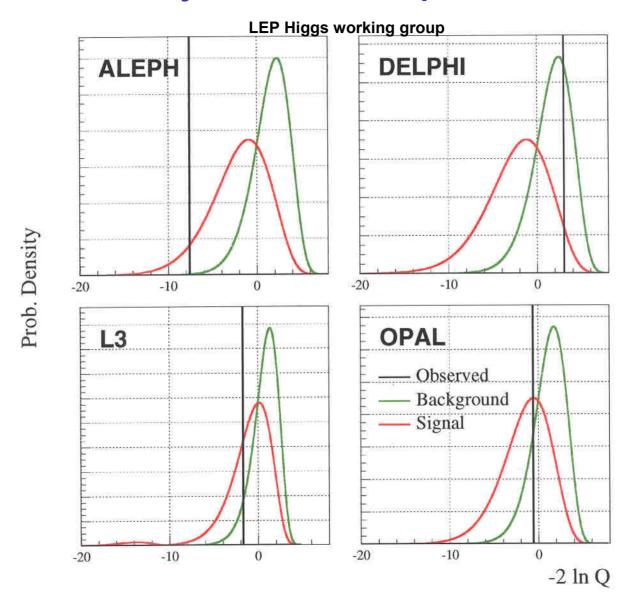
$$CL_s = \frac{CL_{s+b}}{CL_b}$$
 set lower bound on M_H

LEP SM Higgs results

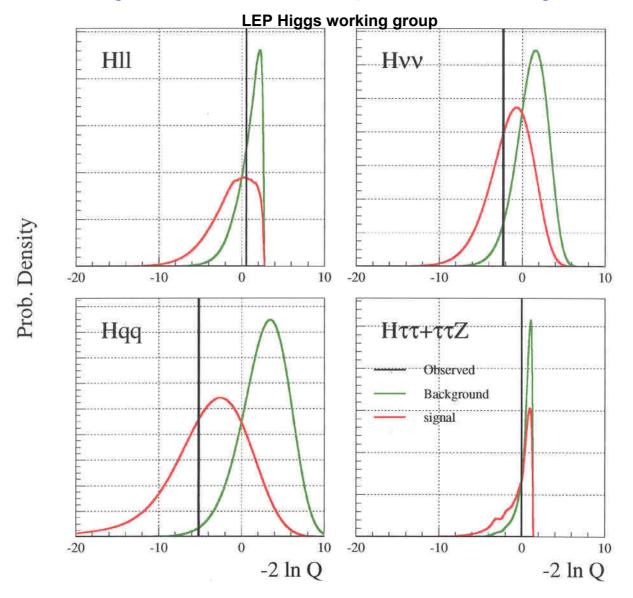


$$M_{\rm H} = 115.0^{+1.3}_{-0.9} \, {\rm GeV}$$

$$1-CL_b=2.9\sigma$$

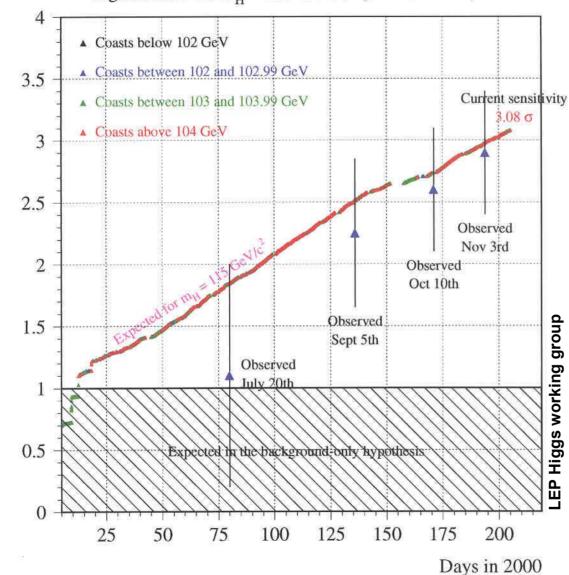

Probability that what is observed is background is 0.4%

LEP SM Higgs lower bound



$$M_{\rm H} > 113.5 \,{\rm GeV} \, @95\% \,{\rm CL}$$

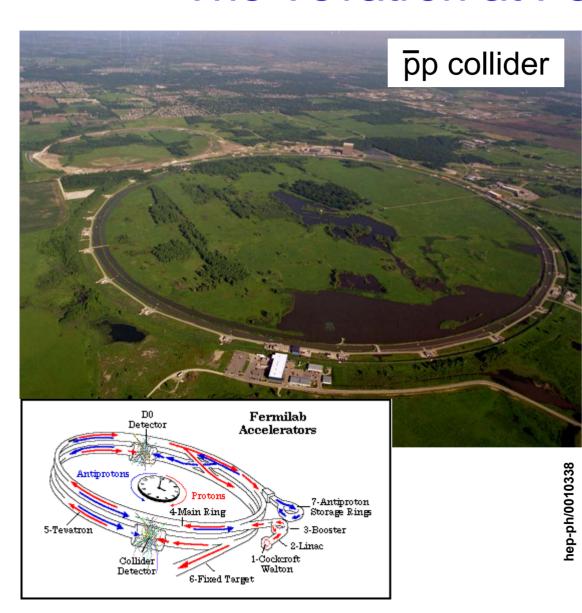
Probability densities per detector



Probability densities per decay mode

Evolution with luminosity

Significance for $m_H = 115 \text{ GeV/c}^2 (02\text{-Nov-}2000)$

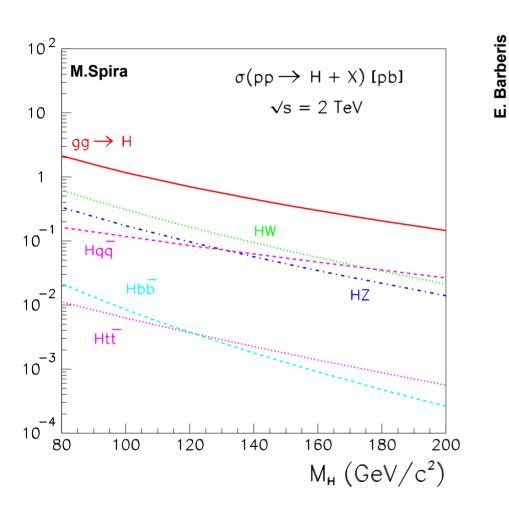

LEP community requested another 200 pb⁻¹ in 2001 to reach 5σ

LEP is now being dismantled, to install the LHC

When will we know if LEP really detected a Higgs?

Significance (in number of σ s)

The Tevatron at Fermilab



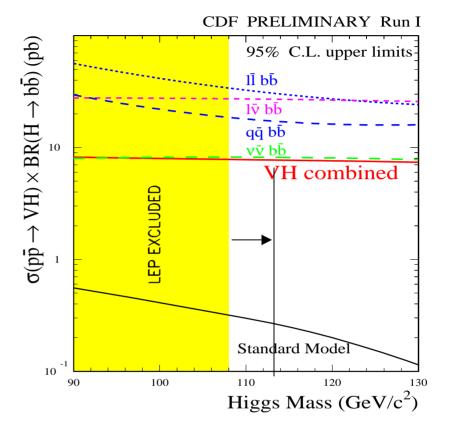
Run I $\sqrt{s} = 1.8 \text{ TeV}$ 6+6 bunches, 3.5 µs $\approx 1.6 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ $\approx 2 \text{ pb}^{-1} \text{week}^{-1} \text{ per exp.}$

Run IIa \sqrt{s} = 2.0 TeV 36+36 bunches, 396 ns start March 1st 2001 goal, by end 2002 $\approx 2 \times 10^{32}$ cm⁻²s⁻¹ >2 fb⁻¹per exp.

Run IIb $\sqrt{s} = 2.0 \text{ TeV}$ more bunches, 132 ns goal, by end 2007 $\approx 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ >15 fb⁻¹per exp.

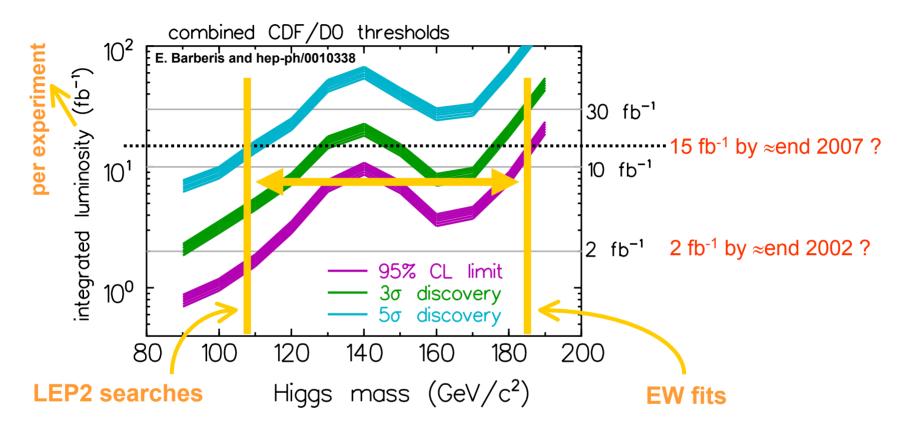
SM Higgs production at the Tevatron

typical	cross-sections	$\sqrt{s} = 2 \text{ TeV}$
Typical	CLO22-26CLIOU2	$\sqrt{s} = 2$ lev


	σ [pb] (m _H =100 GeV
$gg \rightarrow H$	1.0
WH	0.3
ZH	0.18
WZ	3.2
Wbb	11
tt	7.5
tb+tq+tbq	3.4
QCD	O(10 ⁶)

WH/ZH production are preferred

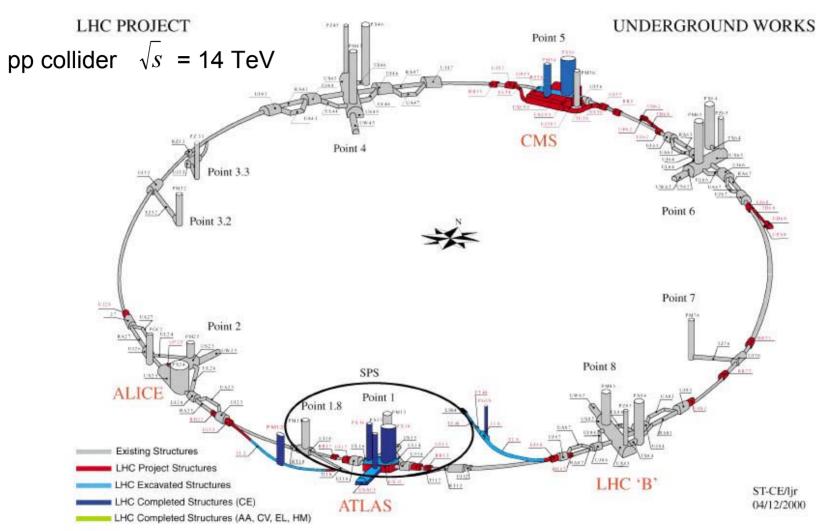
SM Higgs searches at the Tevatron


CDF: SVX b-tagging

WH $\rightarrow vvbb$ 1 and 2 b-tag WH $\rightarrow lvbb$ 1 and 2 b-tag ZH $\rightarrow vvbb$ 1 and 2 b-tag ZH $\rightarrow l/bb$ 1 b-tag

one order of magnitude away from prediction

SM Higgs discovery at the Tevatron

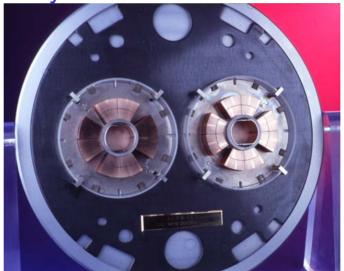

- 2 fb⁻¹ 95% CL barely extend the LEP2 result
- 10 fb⁻¹ 95% CL exclusion to M_H≈180 GeV in the absence of signal
- 15 fb⁻¹ discovery potential for up to M_H≈115 GeV

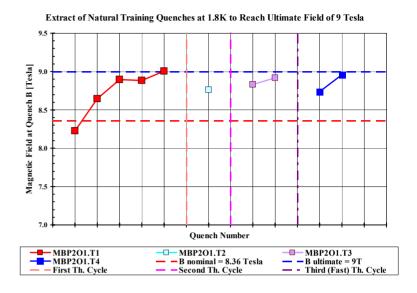
Aerial view of CERN

Large Hadron Collider at CERN

Large Hadron Collider at CERN

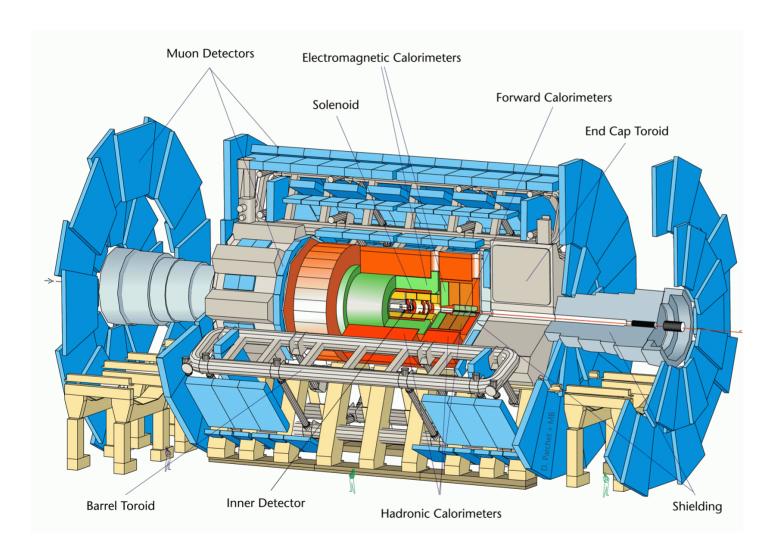
pp collider \sqrt{s} = 14 TeV


2835+2835 bunches, 25 ns octan test in 2004 ring cooled by end 2005 beam for physics 2006 $\approx 2 \times 10^{33}$ cm⁻²s⁻¹ after 7 months


latest: 10 fb⁻¹ by March 2007

expect 10 fb⁻¹/y for first 3 years

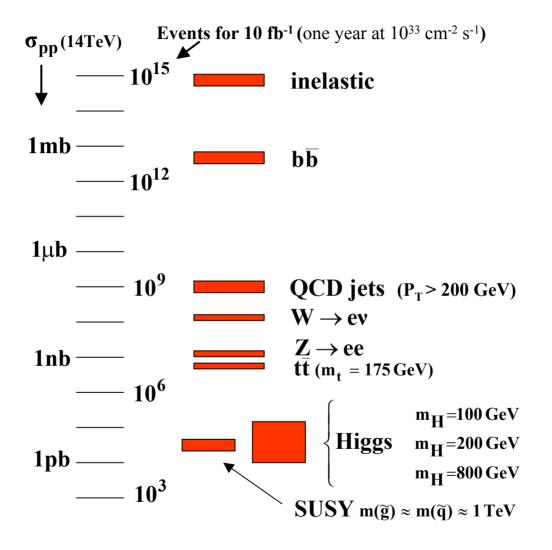
design:1×10³⁴ cm⁻²s⁻¹, 100 fb⁻¹/y

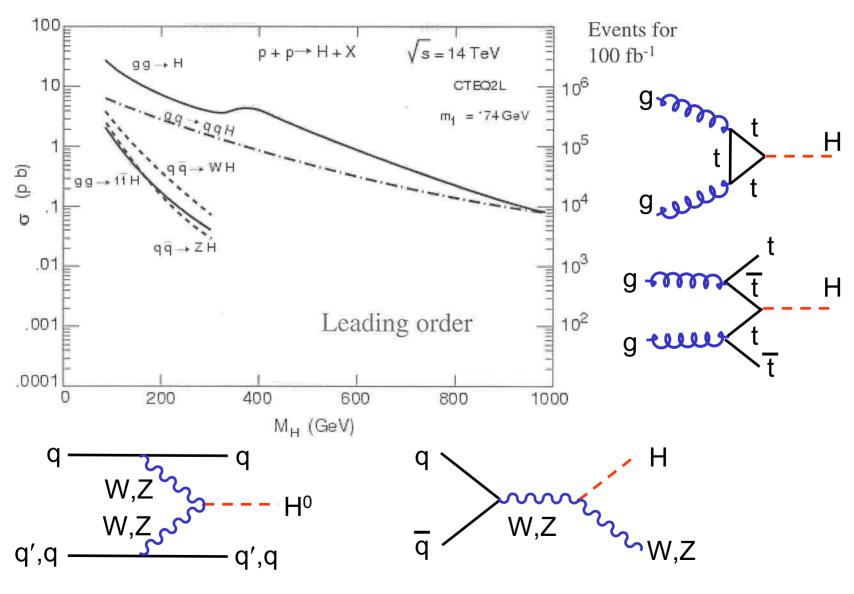


5000 superconducting magnets (1296 dipoles) Cu-clad Nb-Ti cables to operate at 1.9K with up to 15kA

Dipole field of 8.36T (Tevatron 4.5T, HERA, 5.5T) "Contracts for all main components of dipoles are now placed and series production has started". L.R. Evans, Scientific Policy Comitte, CERN, 11/12/2000

LHC: 25×E and 10k×L of SPS for same power


The ATLAS Detector

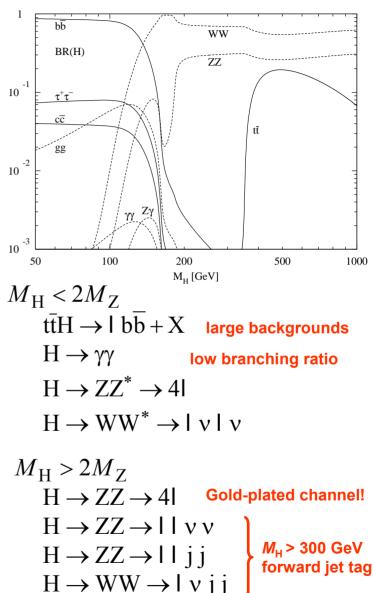


Alberta
Carleton
CRPP
Montréal
Toronto
TRIUMF
UBC
Victoria
York

LHC PP cross section

SM Higgs production at the LHC

Main SM Higgs search channels


Large QCD backgrounds:

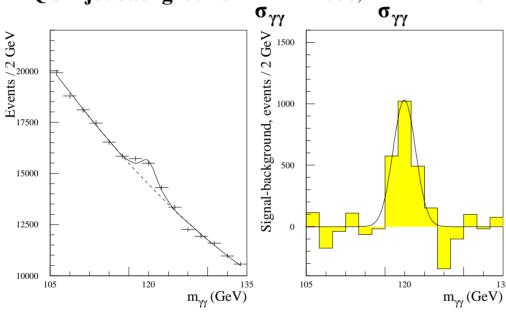
$$\begin{split} \sigma\!\!\left(\!H \to b\overline{b}\right) &\approx 20 \; pb \qquad {}^{\text{M}_{\text{H}}\text{=}120 \; \text{GeV, direct}} \\ \sigma\!\!\left(\!b\overline{b}\right) &\approx 500 \; \mu b \end{split}$$

No hope to trigger on or extract fully hadronic final states

Look for final states with photons and leptons

Detector performance is crucial: b-tag, γ/I *E*-resolution, γ/J separation, missing energy resolution, forward jet tag,...



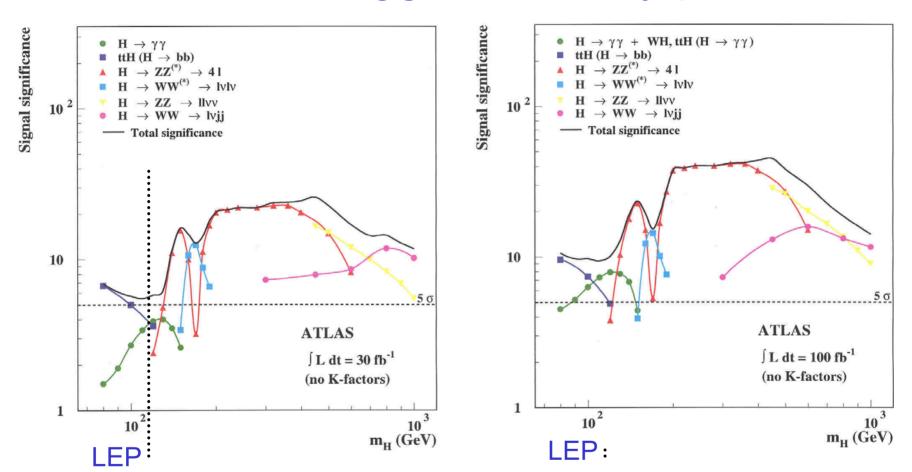

$H \rightarrow \gamma \gamma$ at ATLAS

Signal γγ background (irreducible)

$$\begin{split} &\sigma \times BR = 43 \text{ fb (m}_H = 100 \text{ GeV)} \\ &\frac{d\sigma}{dm_{\gamma\gamma}} \sim 1200 \text{ fb/GeV (m}_{\gamma\gamma} = 100 \text{ GeV)} \end{split}$$

QCD jet background

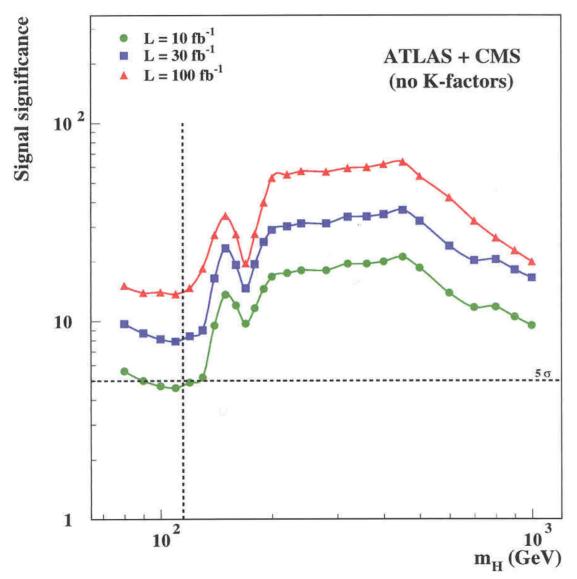
Two isolated γ 's: $p_T^{-1}>40$ GeV, $p_T^{-2}>25$ GeV, $|\eta|<2.5$


Good γ/jet separation: QCD jet background at the level of 10 to 20% of the irreducible γγ background

Good mass resolution:

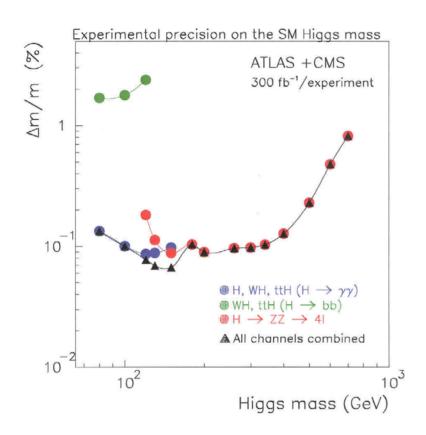
 σ_m =1.3 GeV for m_H =100 GeV

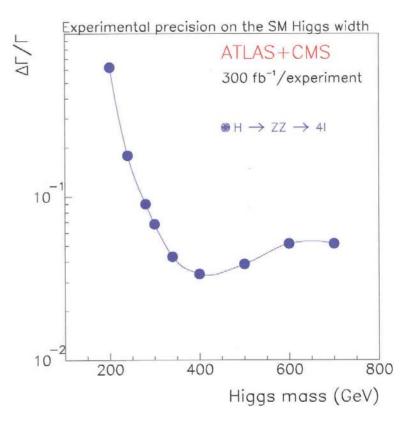
m _H (GeV)	100	120	140
signal events	960	1200	930
γγ background	44700	30300	20800
γ - jet, jet - jet background	6700	4400	3900
Statistical significance	4.7σ	6.9σ	6.3σ


ATLAS SM Higgs discovery potential

SM Higgs can be discovered over full mass range with 30 fb⁻¹ In most cases, more than one channel is available.

Signal significance is S/B^{1/2} or using Poisson statistics


LHC SM Higgs discovery potential



need 10 fb⁻¹ for 5σ 115 GeV Higgs discovery (during 2007)

larger masses is much easier!

SM Higgs mass and width

Beyond the Standard Model

In principle, if $130\,{\rm GeV} \approx < M_{\rm H} \approx < 180\,{\rm GeV}$ then the SM is viable to $M_{\rm PL}$ But, SM one loop corrections

$$M_{\rm H}^2 = \left(M_{\rm H}^2\right)_0 + bg^2\Lambda^2$$
 $b \sim O(1)$ $\left(M_{\rm H}\right)_0$ is parameter of fundamental theory

The "natural" value for $M_{\rm H}$ is $g\Lambda$, which leads to the expectation

$$\Lambda \sim \frac{M_{\rm H}}{g} \sim O(1 \,{\rm TeV})$$

If $\Lambda >> 1$ TeV, need "unnatural" tuning

$$\frac{(M_{\rm H}^2)_0}{\Lambda^2} = \frac{M_{\rm H}^2}{\Lambda^2} - g^2$$

If $\Lambda = M_{\rm Pl}$, need adjustment to the 38th decimal place!!!

Violation of naturalness = hierachy problem

Low-energy supersymmetry is a way out...

Supersymmetry

Maximal extension of the Poincaré group

```
3D rotations | Lorentz | Poincare' | SUSY translations | SuperPoincare' |
```

SUSY actions are invariant under superPoincaré

they are composed of an equal number of bosonic and fermionic degrees of freedom

SUSY mixes fermions and bosons

exact SUSY \longrightarrow there should exist fermions and bosons of the same mass clearly NOT the case \longrightarrow SUSY IS BROKEN \longrightarrow WHY BOTHER WITH SUSY??

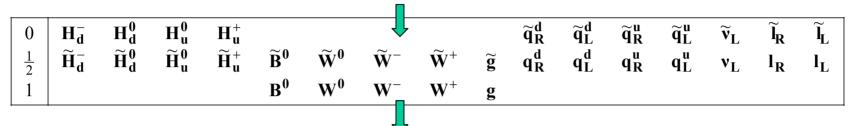
A solution to the hierarchy problem

If the Higgs is to be light without unnatural fine tuning, then (softly broken) SUSY particles should have $M_{SUSY} < 1$ TeV. SUSY can be viable up to M_{Pl} AND be natural!

GUT acceptable coupling constant evolution

The precision data at the Z mass (LEP and SLC) are inconsistent with GUT's using SM evolution, but are consistent with GUT's using SUSY evolution, if $M_{SUSY} \approx 1 \text{ TeV}$

A natural way to break EW symmetry


The large top Yukawa coupling can naturally drive the Higgs quadratic coupling negative in SUSY

Local SUSY is SUperGRAvity

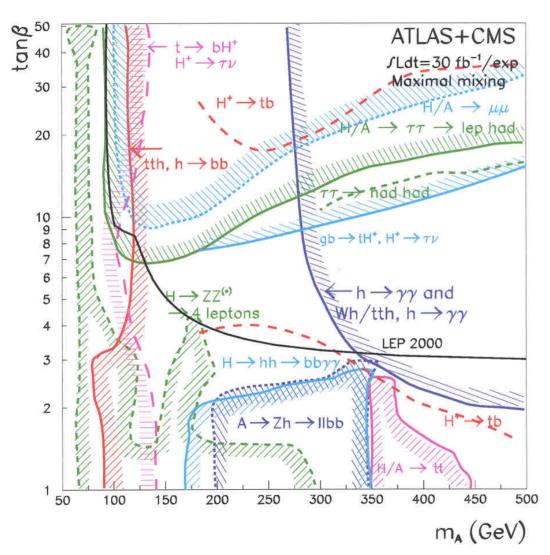
Minimal SUSY Higgs sector

MSSM: SM + an extra Higgs doublet + SUSY partners

SUSY breaking

EW symmetry breaking

(0	A	Н	h	H ⁻	\mathbf{H}^{+}			,		$\widetilde{\mathbf{q}}_{2}^{\mathbf{d}}$	\widetilde{q}_1^d	$\widetilde{\mathbf{q}}_{2}^{\mathrm{u}}$	$\widetilde{\mathbf{q}}_{1}^{\mathrm{u}}$	$\widetilde{\mathbf{v}}_{\mathbf{l}}$	$\widetilde{\mathbf{l_2}}$	$\widetilde{\mathbf{l_l}}$
-	$\frac{1}{2}$	χ_4^0	χ_3^0	χ_2^0	χ_1^0	χ_2^-	χ_1^-	χ_2^+	χ_1^+	$\widetilde{\mathbf{g}}$	q_R^d	q_L^d	q_R^u	q_L^u	$\mathbf{v_l}$	l_R	$l_{ m L}$
	1					•											


→ 5 massive Higgs particles, with M_h < 130 GeV </p>

At tree level, all Higgs boson masses and couplings can be expressed in terms of two parameters only

$$m_A$$
 and $tan\beta = \frac{vev H_u}{vev H_d}$

Note that we also have the following mixings $\begin{array}{c} B^0,W^0 \to \gamma,Z^0 \\ \widetilde{W}^\pm,\widetilde{H}^\pm \to \chi_{1,2}^\pm \\ \widetilde{B}^0,\widetilde{W}^0,\widetilde{H}_u^0,\widetilde{H}_d^0 \to \chi_{1,2,3,4}^0 \\ \end{array}$ with off-diagonal elements proportional to fermion masses $\begin{array}{c} \widetilde{I}_L,\widetilde{I}_R \to \widetilde{I}_l,\widetilde{I}_2 \\ \widetilde{q}_L,\widetilde{q}_R \to \widetilde{q}_1,\widetilde{q}_2 \end{array}$

MSSM Higgs search

Full parameter space covered, SM and MSSM can be distinguished for almost all cases

Most part of the parameter space covered by at least two channels, except low m_A region (covered by LEP200)

if h was "seen" at LEP200: A/H should be observable at LHC for $m_{\rm A} < \sim 2~m_{\rm top}$

If A or h was "seen" at LEP200: the charged Higgs should be seen at LHC

Conclusions

The SM Higgs sector still requires direct experimenta verification

Origin of electroweak symmetry breaking Origin of mass

LEP results tantalizing

$$M_{\rm H} = 115.0^{+1.3}_{-0.9} \,\text{GeV}$$
 if signal... 2.9 σ $M_{\rm H} > 113.5 \,\text{GeV} \, @95\% \,\text{CL}$

Must now wait for the Tevatron and the LHC

If $M_{\rm H} \sim 115~{\rm GeV}$ both Tevatron and LHC may discover it in ~2007 If $M_{\rm H}$ larger then LHC rules

New physics at O(1 TeV) very likely, supersymmetry is a big favorite

This is going to be a very exciting decade!