QCD Multijet Event Generation MLM prescription for the removal of event double counting

25 October 2006

- Matrix element
- Parton shower
- MLM matching
- Comments

M. Lefebvre University of Victoria

Parton generation

M. Dobbs and J.B. Hansen, Comput. Phys. Commun. 134 (2001) 41.

Parton generation

- Analytical calculation of gluon radiation has divergences that make it impossible to calculate ME for the complete N_{partons} phase space. Furthermore, calculation are calculated to a fixed perturbative order.
 - e.g. Alpgen
- Generators solve this problem through parton shower models that add gluon radiation to the output of the ME calculation
 - e.g. Herwig, Pythia

Double counting

Consider a 3-(hard)parton final state, before hadronization

- it can come from a 2 parton ME and one parton from PS
- it can come from a 3 parton ME

Consider a 3-jet final state

 it can also come from a 4 parton ME of which two partons are reconstructed as one jet

Introduce a convention that decides which part of the 3-jet phase space is generated by ME, and which part of phase space is generated by PS.

Jets and Partons

ME Partons

 they come from the matrix elements calculation

PS Partons

they come from the parton shower model

Parton Jets

 they come from an algorithm run on all ME+PS partons before hadronization

Reconstructed Jets

 they come from an algorithm run on stable particles or on detector signatures often just called "partons"

often just called "jets"

MLM Matching Prescription

- Generate parton level configurations from ME with N_{partons} constrained by
 - $p_{\rm T} > p_{\rm Tmin}$ and $\Delta R_{\rm parton-parton} > R_{\rm min}$
- Perform parton shower
- Process the showered event before hadronization with a cone jet algorithm defined by
 - E_{Tmin} and R_{jet}
- Match N_{partons} ME partons and (parton)jets
 - for each ME parton
 - select the jet with minimum $\Delta R_{\text{jet-parton}}$
 - if $\Delta R_{\text{jet-parton}} < R_{\text{jet}}$ then the ME parton and this jet are matched
 - if a jet is matched to more than one ME parton, reject event

Inclusive sample

- if all N_{partons} ME partons are matched keep the event, otherwise reject.
- then $N_{\text{jet}} \ge N_{\text{partons}}$

Exclusive sample

• if all N_{partons} ME partons are matched and $N_{\text{jet}} = N_{\text{partons}}$ keep the event

25 October 2006

Final Multijet Sample

- for $N_{\rm jet} < N_{\rm max}$
 - produce exclusive N_{iet} samples
- for $N_{\rm jet} = N_{\rm max}$
 - produce inclusive N_{jet} sample
- Combined all these samples to produce an inclusive sample with all jet multiplicities
 - add cross sections, not events!

Comments

- The choice of a cone algorithm for the production of parton-jets is arbitrary: it is a topological criterion to classify events and ensure the absence of double counting.
- The physics obtained from the final inclusive sample should not depend on the generation cuts (p_{Tmin} , R_{min}) nor on the matching parameters (E_{Tmin} , R_{jet}). Different jet definitions can be used on the final reconstructed jets.
- The extent to which results depend on the generation cuts and matching parameters is a measure of the success of the matching prescription.
- It it not necessary that $E_{\text{Tmin}} = p_{\text{Tmin}}$ or $R_{\text{jet}} = R_{\text{min}}$. The matching ensures limited dependence on this choice.