

Canada and the ATLAS Experiment

TRIUMF

May 21st 1998

The future Large Hadron Collider (LHC) at CERN will provide 14TeV centre-of-mass proton-proton collisions. The ATLAS detector, currently under construction, is designed to take full advantage of the LHC discovery potential. The ATLAS detector and its experimental programme will be briefly reviewed, with emphasis on its Canadian content.

Michel Lefebvre University of Victoria Physics and Astronomy

Physics Motivation Large Hadron Collider at CERN

Allow to perform experiments at constituent energies in the 1-2 Tev region using

14 TeV pp collisions

Understand the Physical Origin of the

Electroweak Symmetry Breaking

and the

Origin of Mass

Higgs to be found below \approx 1 TeV

and/or

New Physics beyond the Standard Model

PP Cross Section

LHC Parameters

Circumference C	26659	m
Energy E	7	TeV
Lafipld B	8.4	Т
Bunch spacing s	25	ns
Bunch $ppulation$ N	10^{11}	
Bunch radius $\sigma_x = \sigma_y$	16	$\mu { m m}$
Bunch length σ_s	75	mm
φænne tør ξ	0.0034	
Luminosity L	10	$\mathrm{nb}^{-1}\mathrm{s}^{-1}$
at Distance neareket quadrup	$\ell_{\rm Q} = \pm 23$	m
Events/collision n_c	19	

LHC Engineering

- 1- Beam Screen
- 2- Cold Bore
- 3- Cold mass at 1.9K
- **4- Radiative insulation**
- 5- Thermal shield at 55 to 75K
- **6-** Support post
- 7- Vacuum vessel
- 8- Alignment target

TRIUMF May 21st 1998

Michel Lefebvre (Victoria)

ATLAS

General-purpose pp detector

designed to exploit the full discovery potential of the LHC

Designed to operate at high luminosity 10^{34} cm⁻²s⁻¹

and at initial lower luminosities

Designed to be sensitive to many signatures e, γ , μ , jet, E_T^{miss} , b - tagging,...

and to more complex signatures τ and heavy flavour from secondary vertices

ATLAS Collaboration

144 Institutes, 37 Funding Agencies

- Mar 92 Expression of Interest
- Oct 92 Letter of Intent
- Jun 93 Green light to proceed towards a Technical Proposal
- **Dec 94** Technical proposal
- Jan 96 ATLAS approval
 - 97 Start of construction
- Jul 05 First collisions

The ATLAS Detector

Inner Detector

Low luminosity simulation. Precision hits are shown for $0 < \eta < 0.7$; TRT hits are shown in barrel for z > 0; high threshold transition radiation hits are shown as red points. Fitted tracks (red), with $p_{\rm T} > 0.5 \,\text{GeV}$ and $0 < \eta < 0.7$, are shown just in the precision tracker so as not to obscure the TRT hits.

High luminosity simulation. Precision hits are shown for $0 < \eta < 0.7$; TRT hits are shown in barrel for z > 0; high threshold transition radiation hits are shown as red points. Fitted tracks (red), with $p_{\rm T} > 5 \,\text{GeV}$ and $0 < \eta < 0.7$, are shown just in the precision tracker so as not to obscure the TRT hits.

ATLAS Calorimetry

Tile Calorimeter

Sampling calorimeter made of steel and scintillating tiles.

The laminated structure of the absorber allows for channels in which the light collecting fibres run.

Combined tests with EM barrel

LAr Calorimetry

Physics Requirements

Reconstruction $\rightarrow P_{e}$, P_{γ} , P_{jet} , E_{T}^{miss} , (P_{μ}) , bunch **Separation** γ/π^{0} , e/π

General Requirements

Fast readout scheme Radiation hard High segmentation Uniformity of response Dynamic range (from 1 mip to 5 TeV) Hermiticity down to $|\eta| \approx 5$ Long term stability "Ease" of calibration Cost Mechanics consideration: modular construction installation in ATLAS

Design Goals

EM Calorimeters
$$(0 \le |\eta| \le 3.2)$$
 and Presampler $(0 \le |\eta| \le 1.8)$
 $\frac{\sigma}{E} \le \frac{10\%}{\sqrt{E(\text{GeV})}} \oplus 0.7\% \oplus \frac{0.27}{E(\text{GeV})}$
 $\sigma_{\theta} \le \frac{40 \text{ mrad}}{\sqrt{E(\text{GeV})}}$
 $\sigma_{\overline{r}} \le \frac{8 \text{ mm}}{\sqrt{E(\text{GeV})}}$
Hadronic Endcap $(1.5 \le |\eta| \le 3.2)$
 $\frac{50\%}{\sqrt{E(\text{GeV})}} \oplus 3\% \le \frac{\sigma}{E} (\text{jets}) \le \frac{100\%}{\sqrt{E(\text{GeV})}} \oplus 10\%$
Forward Calorimeter $(3 \le |\eta| \le 5)$
 $\frac{\sigma}{E} (\text{jets}) \le \frac{100\%}{\sqrt{E(\text{GeV})}} \oplus 10\%$

Shaping, Pileup and Electronic Noise

Inelastic pp cross section 70 mbAverage luminosity of 1034 cm-2s-12835 active bunches over 3564 LHC clock cycles

23 inelastic events per crossing

Radiation Environment (1 MeV n_{eq}/cm²/yr)

• Up to 10¹⁶ n/cm²/yr and 2x10⁶ Gy/y in the FCAL

• Less than 10¹² n/cm²/yr and 20 Gy/y at the EM electronics location

• Less than $5x10^{12}$ n/cm²/yr and 50 Gy/y at the Hadronic Endcap electronics location Dose (Gy/yr)

EM Barrel Calorimeter and Cryostat

Endcap Cryostat and Calorimeters

EM Calorimeter Prototypes

LAr Front-End-Board

Readout Architecture

LeCroy: 28-29 May 1997

D.M. Gingrich

Muon System: Air-Core Toroid Magnets

TRIUMF May 21st 1998

Muon System: Detector Layout

Material Budget

TRIUMF May 21st 1998

IMPORTANT PHYSICS PROCESSES

	Luminosity		Mass (TeV)	
	Low	High	reach	
$H \to b\bar{b}$			0.08 to 0.14	
${f H} o \gamma\gamma$		\checkmark		
$\mathbf{H} ightarrow \mathbf{W} \mathbf{H} ightarrow \ell \gamma + \mathbf{X}$		\checkmark		
$H \to Z Z^* \to 4 \ell$			0.13 to 0.18	
$H \to ZZ \to 4\ell$	\checkmark		0.18 to 0.70	
$\mathbf{H} ightarrow \mathbf{Z} \mathbf{Z} ightarrow \ell \ell u$	\checkmark		0.50 to 0.80	
$qqH \to ZZ \to \ell \ell qq$			0.50 to 1.0	
$qqH ightarrow WW ightarrow \ell u qq$				
$\mathbf{SUSY} ightarrow E_{\mathrm{T}}^{\mathrm{miss}} + n\mathbf{jets}$		\checkmark	~ 1.0	
$\textbf{SUSY} \rightarrow \textbf{same-sign dileptons}$		\checkmark		
${f h} ightarrow \gamma \gamma$		\checkmark		
$t \rightarrow bH^+$				
$\mathbf{A} ightarrow au au$				
${f h} ightarrow au au$				
CP violation in B decays				
$tar{t} ightarrow \ell + \mathbf{X}$	\checkmark			
$t\bar{t} \rightarrow \ell\ell + X$	\checkmark	\checkmark		
Inclusive jet cross section		\checkmark	~ 15	
$\mathbf{Z}' ightarrow \mathbf{ee}, \mu \mu, \mathbf{jj}$			\sim 1.5	
$\mathbf{W}' ightarrow \mathbf{e} u, \mu u, \mathbf{j} \mathbf{j}$			~ 6	
$ ho_{ m TC} \left({f W}_{ m L} \; {f Z}_{ m L} ight) \; ightarrow \; \ell \ell \ell \; + \; E_{ m T}^{ m miss}$		\checkmark	\sim 1.5	
$\omega_{ m TC} \left({f Z}_{ m L} \gamma ight) \ ightarrow \ell \ell \ell$		\checkmark	~ 2.0	
$\mathbf{pp} \rightarrow \mathbf{leptoquarks} \ \rightarrow \ell \mathbf{j} \ell \mathbf{j}$		\checkmark	\sim 1.5	

ATLAS Physics Workshop, Grenoble March 29th to April 4th 1998

Standard Model Higgs

ATLAS Canada Collaboration

Alberta Carleton CRPP Montréal Toronto TRIUMF UBC Victoria York

33 grant-eligible physicists Over 80 people, including Engineers, Technicians, Students

Activities focused on LAr Calorimetry

4 Major Projects Funded by a Major Installation Grant

Endcap Hadronic Calorimeter

Forward Hadronic Calorimeter

Front-End-Board Electronics

Endcap Signal Cryogenics Feedthroughs

Important Activities

Radiation Hardness Studies

Physics Studies

Hadronic Endcap Calorimeter

LAr-Cu sampling calorimeter covering $1.5 < \eta < 3.2$

Composed of 2 wheels per end, 32 modules per wheel		Channel count for both endcaps	
Front wheel: 67 t	Front	1536	
	25 mm Cu plates	Middle	1472
Back wheel:	90 t	Back	1408
	50 mm Cu plates	Total	4416

Gap between Cu plates: Front wheel module:

Back wheel module:

8.5 mm

2103 kg 25 mm Cu plates

2811 kg 50 mm Cu plates

Hadronic Endcap Readout Structure

Hadronic Endcap Module Connection Inter-module clamping bar

Endcap Hadronic Calorimeter Responsibilities

Project Leaders: H. Oberlack (MPI), C. Oram (TRIUMF)Mechanical Design: Canada (T. Hodges and R. Langstaff)Electronics:MPI, Munich

Construction:

Canada (Alberta, UBC, Montréal, TRIUMF, Victoria)

Europe (Germany, Russia, Slovak Republic)

Testbeam:

Cryogenics, trigger, DAQ, calibration: Europe

Testbeam software: Canada (Victoria)

Endcap Hadronic Calorimeter Schedule

Module 0 (2 full modules) in beam tests in 1998 (April and August). First occasion at full hadronic shower containment. Preliminary analysis of April data done.

Production Readiness Review successfully completed May 4th

Series module production started:

Raw material procurement initiated (Cu plates, glue, polyimide, Cu clad poliymide, honeycomb, stainless steel parts). Attempt to obtain Cu from China.

Tooling upgrade and construction started. This includes improvements to the TRIUMF cleanrooms, and construction of a cleaning facility (TRIUMF).

First series production module to arrive in CERN early in 1999. All modules to be cold tested at CERN. Up to 1/8 of the modules will be beam tested at CERN.

Wheel assembly to start mid to late 2000 in CERN.

Endcap Hadronic Module 0: Foils

TRIUMF May 21st 1998

Endcap Hadronic Module 0: Stacking

TRIUMF May 21st 1998

Endcap Hadronic Module 0

Endcap Hadronic Modules 0: CERN

Endcap Hadronic Modules 0: CERN

TRIUMF May 21st 1998

Endcap Hadronic Modules 0: Beam Tests

Endcap Hadronic Modules 0: Beam Tests

HEC Testbeam, April 1998 ELECTRONS Impact Cell 3 Cluster Cells (3, 11, 13)

Endcap Hadronic Modules 0: Beam Tests

Preliminary analysis of pion data.

Need to better understand the low signal multiple time sampling treatment

HEC Testbeam, April 1998 Impact Cell 3, Depth Weighted Nineteen Cell Cluster

Forward Calorimeter

	FCAL1	FCAL2	FCAL3
η_{min}	3.0	3.1	3.2
η_{max}	4.9	4.9	4.9
Absorber material	Cu	W	W
Mass (t)	2.3	4.1	4.0
dE/dx sampling %	1.49	1.36	1.68
Depth (λ)	2.6	3.5	3.4
Gap width (mm)	0.25	0.375	0.50
Drift time (ns)	50	75	100

Channel count for both ends: 2822

Forward Calorimeter Responsibilities

Module 0 (quadrant) tests during summer 1998 FCAL1 and FCAL2 full containment of hadronic showers Final modules construction from mid 19999 to mid 2001 Final assembly and installation at CERN in 2001 to end 2003

Hadronic Forward Calorimeter Principle

FCAL2 Module 0

FCAL2 Module 0

FCAL2 Module 0

LAr Front-End-Board

- **1996:** ATLAS opts for analog pipeline Canada (Alberta) responsible for SCA controller
- 1997: SCA controller successfully tested with module-0 SCA
- 1998: SCA controller successfully tested with module-0 front-end-board First 4 module-0 FEB's at CERN mid July Calorimeter tests in H8 at CERN

Signal Feedthroughs

Over 180k signal channels in the LAr calorimetry

High density and reliability required:

1920 pins per feedthrough unit

barrel: 64 units

endcaps: 50 units total **Canada (Victoria, TRIUMF)**

Pin Carrier Design

Leak Test Setup in Victoria

- Leak detection using He leak detector supported by an RGA
- Leak detector services warm and cold test stations
- Cooling by cryo-cooler or LN₂
- Fully assembled; commissioning started.

Assembly Jig in Victoria

- Rotation about horizontal and vertical axis possible
- Various assembly scenarios under study
- Under construction

Physics Studies

Canadian active in ATLAS physics studies

 Heavy Higgs searches H → WW → *l*vjj H → ZZ → *ll*jj H → ZZ → *ll*vv

 Technicolour searches

$$\rho_{T} , \pi_{T} , \omega_{T} , \eta_{T}$$

$$\rho_{T}^{\pm} \rightarrow W^{\pm}Z \rightarrow l^{\pm}\nu l^{+}l^{-}$$

$$\rho_{T}^{\pm} \rightarrow \pi_{T}^{\pm}Z \rightarrow bql^{+}l^{-}$$

$$\eta_{8T} \rightarrow t\bar{t}$$

$$\omega_{T} \rightarrow \gamma \pi_{T}^{o} \rightarrow \gamma b\bar{b}$$

•Top physics

single top production tt̄ production top couplings, mass, width

•Three gauge boson couplings

$$\gamma W^+ W^-$$
 in $pp \rightarrow W\gamma$
 $ZW^+ W^-$ in $pp \rightarrow ZW$ or WW

Summary

Large Hadron Collider at CERN

- 14 TeV center-of -mass pp collisions (2005)
- very exciting programme!

ATLAS

- Successful R&D phase closing
- Construction phase starting
- Exploit the full discovery potential of the LHC

ATLAS Canada

• Successful Canadian involvement in ATLAS

• Canada's involvement in ATLAS will grow as start up date approaches

• Canada is already considering other contributions to ATLAS, beyond its major hardware responsibilities (DAQ, Inner detector)

• It is important, necessary, to consolidate and increase our impact on the ATLAS physics programme

• TRIUMF's role in this programme is crucial, both for IPP and TRIUMF's future