Particle Detectors

A brief introduction with emphasis on high energy physics applications

TRIUMF Summer Institute 2006 July 10-21 2006

Lecture I

- measurement of ionization and position
- Lecture II
 - scintillation and photo detection
 - calorimetry
- Lecture III
 - particle identification
 - detector systems

Michel Lefebvre Physics and Astronomy University of Victoria

Literature on particle detectors

Textbooks

- C. Grupen, Particle Detectors, Cambridge University Press, 1996.
- K. Kleinknecht, Detectors for Particle Radiation, Cambridge University Press, 1999
- G. Knoll, Radiation Detection and Measurement, John Wiley and Sons, third edition, 1999.
- W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, second revised edition, Springer-Verlag, 1994.

Review articles and other sources

- Experimental Techniques in High Energy Physics, T. Ferbel (editor), World Scientific, 1991.
- Instrumentation in High Energy Physics, F. Sauli (editor), World Scientific, 1992.
- Annual Review of Nuclear and Particle Science
- Particle Data Group, Review of Particle Physics, S. Eidelman et al., Phys. Lett. B592, 1 (2004)

Lecture I

Measurement of ionization and position

- Bethe-Bloch
- Ionization chambers
- Silicon detectors
- Proportional chambers
- Multi wire proportional chambers
- Drift chambers
- Micro gaseous detectors

Interactions of charged particles

- Consider particles heavier than the electron
 - Inelastic collisions with the atomic electrons of the material dominate, but also
 - elastic scattering from nuclei
 - emission of Cherenkov radiation
 - bremsstrahlung
 - soft inelastic collisions
 - excitation
 - hard inelastic collisions
 - ionization
 - e⁻ possibly causing other ionization: δ -rays, knock-on e⁻

Interactions of charged particles

- Maximum transfer of kinetic energy
 - head-on collision

of an $T^{\text{max}} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma b + b^2}$ $b \equiv \frac{m_e}{m}$ γ, β, m, p, E of incident particle

- low energy $m > m_e$ $T^{\max} = 2m_c c^2 \beta^2 \gamma^2$ for $\gamma b \ll \frac{1}{2}$
- very high energy m > m_e

$$T^{\max} \rightarrow E$$
 for $\gamma b \gg \frac{1}{2}$

• $m = m_e$

$$T^{\max} = (\gamma - 1)m_ec^2 = E - m_ec^2$$

Energy loss by ionization and excitation

Bethe-Bloch formula

- mean rate of energy loss, or stopping power
 - ionization only + density and shell corrections
 - for moderately relativistic charged particles $(m > m_e)$

$$\left\langle \frac{dE}{dx} \right\rangle = -4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T^{\text{max}}}{I^2} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$

- MeV g⁻¹ cm² \rightarrow beware *x* is (length)×(density)
- incident particle: z, β , γ , m, T^{max}
- absorber: Z, A, I, δ , C (atomic shell corrections)
 - $I \approx 16Z^{0.9}$ eV for Z > 1 ionization constant

 $\delta \approx 2 \ln \gamma + \text{constant}(\text{material})$ density effect \rightarrow Fermi plateau

• constant: $4\pi N_A r_e^2 m_e c^2 = 0.3071 \text{ MeV cm}^2 \text{mol}^{-1}$

TRIUMF Summer Institute 2006, Particle Detectors

Energy loss by ionization and excitation

TRIUMF Summer Institute 2006, Particle Detectors

Radiative losses

Bremsstrahlung important at high energy and for electrons! See Calorimetry.

TRIUMF Summer Institute 2006, Particle Detectors

Fluctuations in energy loss

Real detectors have limited granularity

- measure $\Delta E / \Delta x$
- thin layers (or low ρ)
 - few collisions, some with high energy transfer
 - "Landau tails"

- thick layers (or high ρ)
 - many collisions
 - energy loss distribution tends towards a Gaussian

Ionization yield

Total ionization

Ar gas: W = 26 eV and $\Delta E / \Delta x (\text{MIP}) = 2.44 \text{ keV/cm}$ which means $n_{\text{T}} = 94 \text{ cm}^{-1}$

- primary ionization electron can have enough kinetic energy to ionize other atoms
- W-value: average energy required to form an electron-ion pair

$$n_{\rm T} = n_{\rm p} + n_{\rm s} = \frac{\Delta E}{W}$$
 = average total ionization yield

- beware of
 - non-primary electrons leaving the detector
 - W dependence on *E* for slow particles
 - W dependence on contaminants
 - recombination and electron capture

TRIUMF Summer Institute 2006, Particle Detectors

Ionization yield and MIP for gases

Table 4. Properties of gases at normal conditions: density ρ , minimal energy for excitation E_{ex} , minimal energy for ionization E_i , mean effective ionization potential per atomic electron $I_0 = I/Z$, energy loss W_i per ion pair produced, minimal energy loss $(dE/dx)_0$, total number of ion pairs n_T and number of primary ions n_p per cm path for minimum ionizing particles [SA 77]

								$(dE/dx)_0$			
Gas	Z	A	ρ (g/cm ³)	$E_{\rm ex}$ (eV)	E _i (eV)	I ₀ (eV)	W_{i} (eV)	$(MeV/g cm^{-2})$	(keV/cm)	$n_{\rm P} \ ({\rm cm})^{-1}$	$n_{\rm T}$ (cm) ⁻¹
H ₂	2	2	8.38×10^{-5}	10.8	15.9	15.4	37	4.03	0.34	5.2	9.2
He	2	4	1.66×10^{-4}	19.8	24.5	24.6	41	1.94	0.32	5.9	7.8
N_2	14	28	1.17×10^{-3}	8.1	16.7	15.5	35	1.68	1.96	(10)	56
0,	16	32	1.33×10^{-3}	7.9	12.8	12.2	31	1.69	2.26	22	73
Ne	10	20.2	8.39×10^{-4}	16.6	21.5	21.6	36	1.68	1.41	12	39
Ar	18	39.9	1.66×10^{-3}	11.6	15.7	15.8	26	1.47	2.44	29.4	94
Kr	36	83.8	3.49×10^{-3}	10.0	13.9	14.0	24	1.32	4.60	(22)	192
Xe	54	131.3	5.49×10^{-3}	8.4	12.1	12.1	22	1.23	6.76	44	307
CO,	22	44	1.86×10^{-3}	5.2	13.7	13.7	33	1.62	3.01	(34)	91
CH₄	10	16	6.70×10^{-4}		15.2	13.1	28	2.21	1.48	16	53
$C_4 \dot{H_{10}}$	34	58	2.42×10^{-3}		10.6	10.8	23	1.86	4.50	(46)	195

Kleinknecht

Ionization fluctuations

Fano factor

- naively expect $\sigma^2(n_T) = n_T$ (Poisson)
- But for a given energy deposition, n_T is limited by energy conservation, so the fluctuations are in fact smaller

source	energy	absorber	F
X-ravs	5.9 keV	$Ar + 10\% CH_4$	0.21
"	$2.6\mathrm{keV}$	"	0.31
α	$5.03\mathrm{MeV}$	"	0.18
α	$5.68\mathrm{MeV}$	$\mathrm{Ar} + 0.8 \% \mathrm{CH}_4$	0.19
n	$1 \dots 4.5 \mathrm{MeV}$	Si	0.16

$$\sigma^2(n_{\rm T}) = F n_{\rm T}$$

Ionization chambers

Ionization chambers $\Delta U(t) = U(t) - U_{\circ} = \Delta U^{-}(t) + \Delta U^{+}(t)$ Signal $-\Delta U(t_d^+) \equiv -\Delta U = \frac{Ne}{Cd} \left[x_\circ - \left(d - x_\circ \right) \right] = \frac{Ne}{C}$ dU(t) $\Delta Q = -Ne = C\Delta U$ t_d^+ $t_d^ -\Delta U(t)$ $\frac{Ne}{C} \sim \frac{Nex_{\circ}}{Cd}$ t_d^+ $t_d^ \frac{\Delta U^+}{\Delta U^-} = \frac{d - x_{o}}{x} \quad \text{If } x_{o} = \frac{1}{2}d \quad \text{then } \frac{\Delta U^+}{\Delta U^-} = 1$

Ionization chambers

Frisch grid

- problem: in practice one does not want to wait so long to have a signal independent of x_o
 - solve this problem by mounting a grid between anode and cathode, at some intermediate potential

How does this solve the problem?

Ionization chambers

Bias resistor

- results valid for RC >> drift times
- for finite *R*, need to consider the recharging of *C*

Ionization chambers $\left|\vec{E}(r)\right| = \frac{U}{r\ln\frac{r_c}{r}} \propto \frac{1}{r}$ Cylindrical electrodes +U If approximation $v^{\pm} \propto \left| ec{E} ight|$ then C $-\Delta U^{-} = \frac{Ne}{C} \frac{\left(\ln r_{o} - \ln r_{a}\right)}{\left(\ln r_{c} - \ln r_{a}\right)} \Big\} \quad \Delta U$ $\Delta U = \Delta U^- + \Delta U^+$ $\frac{\Delta U^{+}}{\Delta U^{-}} = \frac{\ln r_{c} - \ln r_{o}}{\ln r_{o} - \ln r_{a}} \quad \text{If } r_{o} = \frac{2}{3}r_{c} \quad \text{and} \quad r_{a} \ll r_{c} \quad \text{then} \quad \frac{\Delta U^{+}}{\Delta U^{-}} = \frac{\ln \frac{3}{2}}{\ln \frac{2}{2}r_{c}} \ll 1 \quad \text{in general electron}$ $= \frac{1}{2} \ln \frac{2}{2} \ln \frac$ anode

in general electrons contribute more to the signal

discharging C: pocket dosimeter

TRIUMF Summer Institute 2006. Particle Detectors

Silicon detectors

- Solid state ionization detector
 - traversing charged particle creates e⁻-hole pairs
 - also photo-e⁻ caused by a photon
 - Iow dE/dx required to produce pairs
 - Si: 3.6 eV Ge: 2.9 eV
 - gases: 20 eV to 40 eV
 - scintillators: 400 eV to 1000 eV for light \rightarrow 1 photo-e⁻
 - electric field across the junction causes e⁻-hole to drift apart, producing a detectable current

Silicon detectors

The p-n junction

Silicon detectors

- Silicon microstrip
- (A. Peisert, Instrumentation In High Energy Physics, World Scientific)
- spatial information by segmenting the p layer
- technology extensively used in trackers
 - First hadron collider use in UA2
- pixel segmentation for fine 2D readout
- ATLAS and CMS use Si microstrips and pixels

Gas amplification

- ionization chambers yield small signals
 - MIP in 1cm thick Ar gas detector: about 100 e-ion pairs
 - compare with typical amplifier noise of 1000 e⁻ (ENC)
- strong electric field close to anode
- electrons can gain enough kinetic energy (between collisions, while drifting) to further ionize the gas
 exponential increase of the number of e-ions pairs

1st Townsend coefficient α

$$\alpha = \sigma_{\rm ion} \frac{N_A}{V_{\rm mol}} = \lambda^{-1}$$

mean free path λ

$$V_{mol} = 2$$
$$dn(r) = \alpha(r)n(r)dr$$
$$\Rightarrow n = n_{\circ} \exp\left(\int_{r_{a}}^{r_{k}} \alpha(r)dr\right)$$

it holds that

 $\Delta U = -\frac{e}{C} n_{\circ} A \quad \text{proportional to } n_{\circ}$ $A = \frac{n}{n_{\circ}} \quad \text{gain} \quad (U = 0)$

$$A = \exp\left(\int_{r_a}^{r_k} \alpha(r) dr\right) \simeq k \exp\left(\frac{U_{\circ}}{U_{\text{ref}}}\right)$$

TRIUMF Summer Institute 2006, Particle Detectors

- 2nd Townsend coefficient γ
 - electrons in the avalanche can excite atoms, which then emit photons
 - these photons can produce further electrons through the photoelectric effect

$$A_{\gamma} = \frac{n}{n_{\circ}} = \frac{A}{1 - \gamma A}$$

gain including the effect of photons

- quenching gas (organic molecule with large photo-absorbtion σ) can absorb most photons and keep the avalanche localized
- for $\gamma A \rightarrow 1$, the signal amplitude is ind of n_0 : end of proportional regime

Signal formation

- saturation
 effects
 eventually
 terminates the
 avalanche
- typical values

 $r_c = 1 \text{ cm}, \quad r_a = 30 \text{ }\mu\text{m}, \quad r_k = 50 \text{ }\mu\text{m} \implies \frac{\Delta U^+}{\Delta U^-} = \frac{\ln r_c - \ln r_k}{\ln r_k - \ln r_a} = 10.4$

- electrons collected by the wire in a few ns
- the ions contribute to most of the signal, but their contribution comes much later
- needs signal differentiation to limit dead time

TRIUMF Summer Institute 2006, Particle Detectors

Signal shape

- current source $I(t) = Q \frac{d}{dt} F(t)$
- voltage source $U(t) = \frac{Q}{C}F(t)$

positive charge in the avalanche

a few μ s, the time it takes ions to reach the cathodes

Straw tubes

 Cylindrical proportional chamber of small (less than 1cm) diameter are perfect straw-detector units: used in ATLAS Transition radiation Tracker

Cylindrical gas detectors

TRIUMF Summer Institute 2006, Particle Detectors

Multi wire proportional chambers

- Charpak et al. 1968. (Nobel prize 1992)
 - before MWPC, tracking used optical means
 - breakthrough: each wire in a MWPC acts as an independent proportional counter
 - negative pulse on wire 1 caused by capacitive coupling with negative pulse on parallel neighbour wire 2 is compensated by the positive signal induce on wire 1 by the positive ions moving away from 2 towards 1
 - electrons produced in the avalanche are collected by the wires in a few ns
 - ions drift away from the wires and generate a signal which can be amplified

field lines and equipotentials around anode wires

TRIUMF Summer Institute 2006, Particle Detectors

Michel Lefebvre, Victoria

Multi wire proportional chambers

Fundamental limitation

- electrostatic force between wires is balance by the mechanical tension *T*; mechanical stability requires $T \ge T_o \propto U_o^2$; wires have elastic limit!
- Secondary coordinate
 - Crossed wire planes
 - ghost hits; restricted to low multiplicities
 - Charge division (at end of wires)
 - resistive wires (carbon, $2k\Omega/m$); $\sigma(y/L) < 0.4\%$
 - Timing difference (of signal at end of wires)
 - $\sigma(\Delta t) = 0.1$ ns provides $\sigma(y) \approx 4$ cm (OPAL)
 - Segmented cathode planes

Derivatives of proportional chambers

Thin gap chamber (TGC)

- Operation in saturated mode. Resistivity of graphite layer limits the signal amplitude
- fast (2 ns risetime), large signal, robust
- ATLAS muon endcap trigger Y.Arai et al. NIM A 367 (1995) 398

ATLAS barrel muon system

Concept

Proportional chamber with measurement of drift

- (First studies: T. Bressani, G. Charpak, D. Rahm, C. Zupancic, 1969 First operation drift chamber: A.H. Walenta, J. Heintze, B. Schürlein, NIM 92 (1971) 373)
 - space resolution not limited to cell size
 - Anodes typically 5 to 10 cm apart, corresponding to 1 to 2 ms drift time, yielding $\sigma_x \approx 50$ to 100 μ m
 - Resolution limited by
 - field uniformity
 - diffusion
- ATLAS muon system precision tracking is done with Monitored Drift Tubes (MDT)

TRIUMF Summer Institute 2006, Particle Detectors

Drift and diffusion in gases

No external fields

 Electrons and ions lose their energy due to collisions with the gas atoms

$$\varepsilon = \frac{3}{2}kT \approx 40 \text{ meV}$$

thermalization and Maxwell-Boltzmann energy distribution

 $\frac{dN}{Ndx} = \frac{1}{\sqrt{4\pi Dt}} \exp \left\{ -\frac{x^2}{4Dt} \right\}$ spreading of localization *D*: diffusion coefficient

$$\sigma_x(t) = \sqrt{2Dt}$$
 $\sigma_{3D}(t) = \sqrt{6Dt}$

TRIUMF Summer Institute 2006, Particle Detectors

Drift and diffusion in gases

External electric and magnetic fields

- diffusion transverse to magnetic field is reduced
 - electrons are forced on circle segments with $r = u_T/\omega$
 - the diffusion coefficient transverse to the magnetic field appears reduced D

$$D_{\rm T}^{\rm B} = \frac{D}{1 + \omega^2 \tau^2}$$

• case $\vec{E} \parallel \vec{B}$

- the drift is as for the electric case
- the diffusion transverse to the drift is reduced!

Planar drift chamber designs

Optimize the geometry for constant electric field

Choose drift gases with small E field dependence

Aim at a linear relation between space and time for drifting electrons

(U. Becker, in: Instrumentation in High Energy Physics, World Scientific)

[աա]

Michel Lefebvre, Victoria

[cm]

- Cylindrical drift chambers
 - Position resolution determined by
 - diffusion, path fluctuations
 - electronics
 - primary ionization statistics

anode wire

potential

wire

Geometries of cylindrical drift chambers

Time projection chamber

Optimal chamber including all features

- x-y from signal readout at the end plates
- z from drift time
- analog readout provides
 dE/dx information
 - magnetic field provides momentum and reduce transverse diffusion
- drift over long distances requires good gas quality, precise knowledge of the drift velocity, careful tuning of drift field
- control space charge problems with ion stopping grids (gates)

TRIUMF Summer Institute 2006, Particle Detectors

Micro gaseous detectors

- Microstrip gas chambers (MSGC) (A. Oed, NIM A 263 (1988) 352)
 - Improve speed and resolution with smaller device
 - reproduce the field structure of MWPC with a significant scale reduction
 - metallic anode and cathode strips typically 100 to 200 μm apart on an insulating support

Micro gaseous detectors

Gas electron multiplier (GEM) (R. Bouclier et al., NIM A 396 (1997) 50)

- thin metal-clad polymer foil, chemically pierced by a high density of holes
- electrons drift into holes, multiply, and get out

Micro gaseous detectors

■ TPC with GEM and pad readout^{(D. Karlen et al., NIM A 555} (2005) 80-92)

- electrons first drift in large drift volume
- electron multiplication in multiple stage GEM
- Induced signal read out on PCB pads

TRIUMF Summer Institute 2006, Particle Detectors

Lecture I: Questions

Question I.1

Consider the parallel electrode ionization chamber with a Frish grid.
 Explain how a Frisch grid solves the problem mentioned on slide I/15.

Question I.2

 Consider the parallel electrode ionization chamber of slide I/13. As indicated on this slide, use energy conservation in the detector capacitance to obtain

$$-\frac{dU(t)}{dt} = \frac{Ne}{Cd} \left[v^{-} + v^{+} \right] \qquad -\Delta U(t_{d}^{+}) = U_{\circ} - U(t_{d}^{+}) = \frac{Ne}{C}$$

do not assume the drift velocity constant, but rather a function of the electric field strength (which strictly speaking is a function of time).

In practice the signal is small and the electric field can be considered constant.