Exploring the fundamental building blocks of the universe: particle physics and the energy frontier

Michel Lefebvre Physics and Astronomy

- Matter and forces
- Collider and detector

Michel Lefebvre lefebvre@uvic.ca

UVic Continuing Studies 30 Nov 2012

abstract

Humans have pondered over the building blocks of the universe since ancient times. Early attempts, including the "four elements" earth, water, air and fire, allowed limited understanding and predictions of natural phenomena. Spectacular progress has been made since, but many questions, such as the origin of mass and dark matter, remain. After a review of our current knowledge of matter and forces, this talk will introduce, in simple terms, how physicists probe the very fabric of nature with high-energy particle collisions, and boldly look where no one has looked before. Recent results from the Large Hadron Collider, located in Geneva, will be presented and discussed.

Matter and Forces

What is the world made of?

What holds it together?

Understanding nature's fundamental constituents and forces

Search for the fundamental

Why do so many things in this world share the same characteristics?

People have come to realize that the matter of the world is made from a few fundamental building blocks of nature.

The word "fundamental" is key here. By fundamental building blocks we mean objects that are simple and structureless -- not made of anything smaller.

Even in ancient times, people sought to organize the world around them into fundamental elements, such as earth, air, fire, and water.

Length Scales

Astrophysics explores matter and space in its largest dimensions

Length Scales

"Nothing exists except atoms and empty space; everything else is opinion."

Democritus (ca. 460 BC - ca. 370 BC)

The atomic theory of matter

Leucippus and Democritus (450 BC) First atomic theory (atomos = indivisible)

Dalton (1766-1844)

Atomic theory of matter **Explains the law of definite proportions:** *"when two or more elements combine to form a compound, the proportions by mass of the elements are always the same"*, eg H₂O is always formed of 1:8 of H:O by mass.

Avogadro (1776-1856)

Proposed that all gases at the same temperature, pressure and volume contain the same number of molecules. $N_A = 6.02 \times 10^{23}$ molecules/mol

Boltzmann (1844-1906), ...

Kinetic theory of gases, based on the concept of atoms (and molecules)

The atomic theory of matter

Brown (1773-1858), Lucretius (60 BC) Brownian motion (Brown 1827) Random walk due to momentum transfer from atomic collisions. Evidence for atoms! Explained by Einstein in 1905...

wikipedia: http://en.wikipedia.org/wiki/Brownian_motion

The atomic theory of matter

Perrin (1870-1942)

Einstein's theory on Brownian motion confirmed in 1908 in a series of four different types of measurements (Nobel in 1926) First accurate measurement of *N*_A

Opposition to the atomic theory remained for a while: Mach (died 1916): (Wikipedia) "...Since one cannot observe things as small as atoms directly, and since no atomic model at the time was consistent, the atomic hypothesis seemed to Mach to be unwarranted, and perhaps not sufficiently "economical" "

Seeing atoms

We can now see atoms, one at a time!

76 individually placed iron atoms on a copper surface

Physical and chemical classification

Reihen	Gruppo I. R'0	Grappo 11. R0	Gruppe III. R*0*	Gruppe 1V. RH ⁴ RO ²	Groppe V. RH ⁱ R ¹⁰⁵	Grappo VI. RH ^a RO ³	Gruppe VII. RH R*07	Gruppo VIII. RO4
1	II=1							
2	Li=7	Be=9,4	B==11	C=12	N=14	0=16	F=19	
3	Na=23	Mg=24	A1=27,8	Si=28	P==31	8=32	Cl== 35,5	
4	K≕39	Ca== 40	-==44	Ti=48	V==51	Cr=52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Cu=63)	Zn=65	-=68	-=72	As=75	So=78	Br=80	
6	Rb == 86	Sr=87	?Yt=88	Zr= 90	Nb == 94	Mo=96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag≈108)	Cd=112	In==113	Sn==118	Sb=122	Te=125	J=127	
8	Cs== 133	Ba=137	?Di=138	?Co=140	-	-	-	
9	(-)		_	-	-	-	-	
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	fig=200	T1== 204	Pb=207	Bi=208	· · -	-	
12	-	-	-	Th=231	-	U==240	-	
	1							

Mendeleev's table, 1869

Dmitri Ivanovich Mendeleev 1834-1907

The Elements

$\begin{array}{c} \text{Group} & \rightarrow \\ \downarrow \text{Period} \end{array}$	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
Lanthanides			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
Actinides				89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Discovery of X rays

Discovery of the electron

Thomson proved that cathode rays were made of negatively charged particles, affected by electric and magnetic fields! There is something inside atoms!!

Discovery of the atomic nucleus

"It was almost as if you fired a 15 inch shell into a piece of tissue paper and it came back and hit you."

Ernest Rutherford

The birth of modern physics

Somewhat arbitrary date of 1895 as boundary between "classical" and "modern" physics... But monumental changes occurred in physics shortly after 1895.

- 1897: Discovery of the electron
- 1900: Planck's radiation law
- 1905: Special Relativity
- 1905: The photon hypothesis
- 1911: Rutherford atom
- 1912: Bohr atom

(J.J. Thomson)(Planck)(Einstein)(Einstein)(Rutherford)(Bohr)

The atom and its nucleus

Isotopes

carbon-12 98.9% 6 protons 6 neutrons

carbon-13 1.1% 6 protons 7 neutrons

carbon-14 <0.1% 6 protons 8 neutrons

Table of nuclides

22

Length Scales

Relative scale of the solar system and an atom of lead

Michel Lefebvre, UVic

Inside the proton

the proton: three bound quarks

held together by the strong force

Inside the atom

Length Scales

Matter and Forces

Fundamental Forces

Particles and forces

Global symmetries

global symmetry ⇒ conservation law

homogeneity of space \Rightarrow momentum

homogeneity of time \Rightarrow energy

isotropy of space \Rightarrow angular momentum

isotropy of some abstract space ⇒ some "charge"

electric charge colour charge

Mathematics and model building

Our current understanding of the Laws of Nature is best formulated in the language of mathematics.

Abstract, but otherwise beautiful and often simple, concepts are difficult or impossible to grasp with our senses. They can be described using appropriate mathematical tools.

- Rotations is abstract spaces!
 - spin 1/2 fermions
- Extra spatial dimensions!

The Higgs mechanism

The Higgs Mechanism is such a mathematical construct that allows all particles to have mass while allowing the theory the keep powerful symmetries that predict all forces

Peter Higgs 1929-

R. Brout, F. Englert, P. Higgs, G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble

The Standard Model

Higgs boson: the missing piece

- The SM is a very successful theory
 - relativistic quantum fields
- All experimental measurements at the subatomic level agree with the SM to date!
- But it does not predict the mass of the Higgs boson!

The Standard Model

Michel Lefebvre, UVic

The Higgs Boson

From David Miller, UCL. Cartoon courtesy of CERN

To understand the Higgs mechanism, imagine that a room full of journalists chattering quietly is like space filled with the Higgs field ...
The Higgs Boson

... a well-known person walks in, creating a disturbance as she moves across the room and attracting a cluster of journalists with each step. This increases her resistance to movement, in other words, she acquires mass, just like a particle moving through the Higgs field...

The Higgs Boson

... if a rumour crosses the room, ...

The Higgs Boson

... it creates the same kind of clustering, but this time among the journalists themselves. In this analogy, these clusters are the Higgs particles.

Collider and Detector

Scattering Experiments

High energy particle ⇔ small matter wave!

Accelerating

- Here the proton gains 1.5 eV of energy
- Charged particles can also be accelerated using electromagnetic waves to reach much higher energies
 - 1 MeV = 1,000,000 eV
 - 1 GeV = 1,000,000,000 eV
- ~ mc² for proton!
- 1 TeV = 1,000,000,000,000 eV

Colliding

Particles and antiparticles, perhaps new and unknown ones, can be produced from the pure energy available after the collision

New particles signal new physical laws!

Hadrons

CERN PhotoLab CERN-MI-0807031

Getting around in the Large Hadron Collider

The ATLAS detector at the LHC

The ATLAS Experiment at CERN, http://atlas.ch

LHC magnets operate at 1.9 K 1232 dipoles (8.4 T, 34 t) 392 quadrupoles

a person!

http://www.atlas.ch/multimedia/4-muon-event.html

Historical Picture

The WWW was invented at CERN in the late 80's

The LHC was already a hot topic!

The first photographic image on the Web in 1992!

The ATLAS detector

Electromagnetic shower

Particle identification in ATLAS

ATLAS cavern

Barrel Toroids all installed (Nov 2005)

Moving the calorimeters in place

Closing of LHC beam pipe (16 June 2008)

The ATLAS Collaboration

- 38 countries
- 174 institutions
- 3000 scientific participants
 - about 1000 students

ATLAS and Canada

Alberta Carleton McGill Montréal SFU SFU Toronto TRIUMF UBC Victoria York

ATLAS celebrated its 20th anniversary on Oct 1st

- Over 150 Canadian scientists participate in the ATLAS experiment
- ATLAS Canada Collaboration
- Founded in 1992
- Spokesperson (07-)
- Deputy
- Physics Coordination

- ML, UVic
- Rob McPherson, UVic/IPP
- Dugan O'Neil, SFU
- Pierre Savard, UofT/TRIUMF
- Computing Coordination Reda Tafirout, TRIUMF
- Contributions to the ATLAS detector construction
 - Calorimetry, cryogenics, electronics, trigger, ...
- Contributions to the LHC construction (TRIUMF)
- TRIUMF, Canada's nuclear and particle physics laboratory located in Vancouver
 - http://www.triumf.ca/

ATLAS Control Room: first 7 TeV Collisions

Busy in the ATLAS control room...

-285

Experimental challenge: Pile-up

- In-time pile-up
 - due to multiple collisions per bunch crossing
 - in 2012, ~20 events per bunch crossing!!
- Out-of-time pile-up
 - superposition of signal from preceding (and following) bunch crossing

 $Z \rightarrow \mu^+ \mu^-$ event with 25 vertices

-1cm

SM production cross sections

the **Higgs boson**: the missing piece

neither matter nor force

Higgs production

top-antitop fusion

Higgs decays

The cleanest channels are also the rarest...

$p p \rightarrow H \rightarrow \gamma \gamma$

Proton-proton Collision in the ATLAS Experiment

Production of the Higgs particle decaying to two Photons

http://www.atlas.ch/multimedia/a-higgs-particle-decaying-2-photons.html

$$H \rightarrow \gamma \gamma$$

Continuing Studies Lectures, 30 Nov 2012 **75**

Observation of a new particle

- The five best channels are statistically combined
 - sophisticated treatment, including all systematic errors

4 July 2012 CERN and Melbourne

Is it the Higgs boson?

- We have discovered a new particle!
 - savour this privileged and historical moment
- So far, it looks like the predicted Standard Model Higgs boson
 - but about 25% error on properties
- Have we found the key to the mystery of the origin of mass?

the **proton**: three bound quarks

the **Higgs boson**: the missing piece

If it's the Higgs, is that it?

"Our future discoveries must be looked for in the 6th place of decimals." Albert A. Michelson, 1894

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement." William Thomson (Lord Kelvin), 1900

Many more questions

- * What is the nature of Dark Matter?
- * Why is there more matter than antimatter?
- * Can all forces be unified?
- * Is SuperSymmetry realized in Nature?
- * Are fundamental particles fundamental?
- * Are there extra dimensions of space?
- * Why three families of quarks and leptons?
- * Why are neutrinos so light?
- * What is Dark Energy?

Supersymmetry

Particles and the Universe

The Higgs Boson ?

François Englert

Peter Higgs visiting ATLAS April 2008

Physics at the Large Hadron Collider

More exciting discovering likely to come out of research at the Large Hadron Collider!

Good public web sites: <u>http://atlas.ch/</u> <u>http://www.particleadventure.org</u>/

Michel Lefebvre lefebvre@uvic.ca