Welcome to Subatomic Smash: The Quest for the Higgs Boson

Gregor Craigie, Host of On The Island, **CBC Radio One's** weekday morning show in Victoria

Professor Emeritus Alan Astbury

Dr. Michel Lefebvre

Subatomic Smash The Quest for the Higgs Boson

Michel Lefebvre Physics and Astronomy 9 April 2013

4 July 2012 CERN and Melbourne

4 July 2012 CERN and Melbourne

4 July 2012 CERN and Melbourne

What is the world made of?

What holds it together?

Understanding nature's fundamental constituents and forces

Search for the fundamental

Why do so many things in this world share the same characteristics?

Matter is made from a few fundamental building blocks of nature

Fundamental:

simple and structureless not made of anything smaller

Even in ancient times, people sought to organize the world around them into fundamental elements, such as earth, air, fire, and water.

"Nothing exists except atoms and empty space; everything else is opinion."

Democritus (ca. 460 BC - ca. 370 BC)

Length Scales

Astrophysics explores matter and space in its largest dimensions

Gravitational force

Length Scales

Group → ↓ Period	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	nides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

G				3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
+																			2 He
														5 B	6 C	7 N	8 0	9 F	10 Ne
	3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
	7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
					67	60	60						(5)			(0)		70	
]	Lantha	nides	57 La	Ce	Pr	Nd	Pm	Sm	Eu	64 Gd	65 Tb	Dy	67 Ho	68 Er	Tm	Yb	Lu
			Actin	nides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Group → ↓ Period	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	nides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Group → ↓ Period 1	1 1 H	2	3	4	5	6	7	8	9	10	11	12	13	14	15	10		He
2	3 Li	4 Be											5 B	6 C	7 N	8		
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	nides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Group → ↓ Period	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	nides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

$\begin{array}{c} \text{Group} & \rightarrow \\ \downarrow \text{Period} \end{array}$	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh				49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	70	А		81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	17			113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Acti	nides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Group → ↓ Period	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	nides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

$\begin{array}{c} \text{Group} & \rightarrow \\ \downarrow \text{Period} \end{array}$	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce				62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	nides	89 Ac	90 Th	07			94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Group → ↓ Period	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		Lantha	nides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	nides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Seeing atoms

76 individually placed iron atoms on a copper surface revealed by a scanning tunneling microscope

Photo credit: Copyright © IBM

We can now "see" atoms!

Inside the atom

Inside the atom

Inside the atom

Length Scales

Sun scaled to the size of a basket ball

Length Scales

Sun scaled to the size of a basket ball

Lead nucleus scaled to the size of a basket ball

Scattering Experiments

The wave can resolve features about the size of its wavelength

Light as particles the photon

Light as particles the photon

the electron Matter as particles

Light as particles the photon

Matter as waves

the electron Matter as particles

Quantum Mechanics

Light as waves

Light as particles the photon

Matter as waves

the electron Matter as particles

Scattering Experiments

High energy particle means small matter wavelength!
Accelerating

Accelerating

- Charged particles can also be accelerated using electromagnetic waves to reach much higher energies
 - 1 MeV = 1,000,000 eV
 - 1 GeV = 1,000,000,000 eV ~ mc^2 for proton!
 - 1 TeV = 1,000,000,000,000 eV

Special Relativity

Nobel Prize

1921

Space and Time are not absolute

Space-Time

Newton's dynamics no longer valid for fast moving particles

Albert Einstein (1879-1955)

Equivalence of mass and energy

 $E = mc^2$

Colliding

Can produce new particles

 $E = mc^2$

New particles signal new physical laws!

Inside the atom

Inside the atom

Inside the atom

Electromagnetic force

Force between charged particles

Carried by photons

Electromagnetic spectrum

Strong force

Force between quarks carried by gluons

Binds protons and neutrons to form atomic nuclei

Weak force

neutron $n \rightarrow p + e^- + \bar{\nu}_e$ decay

force carried by W and Z bosons

controls the burning rate of the Sun

$p + p \rightarrow e^+ + \nu_e + pn$

Matter and Forces

Fields and particles

Fields and particles

Waves <-----> particles

Fundamental particles are quanta of excitation of fundamental fields

Symmetries

Symmetries are related to conservation laws

All known forces are consequences of local symmetries... but this only works for massless particles!!

The Higgs mechanism

Mathematical construct that allows all particles to have mass while allowing the theory the keep powerful symmetries that predict all forces

Peter Higgs 1929-

R. Brout, F. Englert, P. Higgs, G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble

Higgs Field

The Standard Model

Higgs boson: the missing piece

- Very successful theory
 - relativistic quantum fields
 - All experimental measurements at the subatomic level agree with the SM to date!
- But it does not predict the mass of the Higgs boson!

The Standard Model

Standard Model Lagrangian Density

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_i^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^{2}W^{+}_{\mu}W^{-}_{\mu} - \frac{1}{2}\partial_{\nu}Z^{0}_{\mu}\partial_{\nu}Z^{0}_{\mu} - \frac{1}{2c^{2}}M^{2}Z^{0}_{\mu}Z^{0}_{\mu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H \frac{1}{2}m_h^2H^2 - \partial_\mu\phi^+\partial_\mu\phi^- - M^2\phi^+\phi^- - \frac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0 - \frac{1}{2c^2}M\phi^0\phi^0 - \beta_h[\frac{2M^2}{c^2} +$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} +$ $\frac{1}{2}g^2 W^+_{\mu} W^-_{\nu} W^+_{\mu} W^-_{\nu} + g^2 c^2_w (Z^0_{\mu} W^+_{\mu} Z^0_{\nu} W^-_{\nu} - Z^0_{\mu} Z^0_{\mu} W^+_{\nu} W^-_{\nu}) +$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})]$ $W_{\nu}^{+}W_{\mu}^{-}$) - $2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}$] - $g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}]$ - $\frac{1}{2}g^{2}\alpha_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})]+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]$ $\phi^+\partial_\mu H)]+\frac{1}{2}g\frac{1}{\alpha}(Z^0_\mu(H\partial_\mu\phi^0-\phi^0\partial_\mu H)-ig\frac{g^2_\mu}{\alpha}MZ^0_\mu(W^+_\mu\phi^--W^-_\mu\phi^+)+$
$$\begin{split} & igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1 - 2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + \\ & igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \end{split}$$
 $\frac{1}{4}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2}{c_\mu} Z^0_\mu \phi^0 (W^+_\mu \phi^- +$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{2}}{c_{\nu}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$
$$\begin{split} W^-_{\mu}\phi^+) + \frac{1}{2}ig^2 s_w A^{\mu}_{\mu}H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) - g^2 \frac{s_w}{c_w}(2c_w^2 - 1)Z^0_{\mu}A_{\mu}\phi^+\phi^- - g^1 s_w^2 A_{\mu}A_{\mu}\phi^+\phi^- - \overline{e}^{\lambda}(\gamma\partial + m_e^{\lambda})e^{\lambda} - \overline{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \overline{u}^{\lambda}_{j}(\gamma\partial + m_w^{\lambda})u^{\lambda}_{j} - \overline{d}^{\lambda}_{j}(\gamma\partial + m_w^{\lambda}$$
 m_d^{λ} $d_i^{\lambda} + igs_w A_\mu [-(\bar{e}^{\lambda}\gamma e^{\lambda}) + \frac{2}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})] + \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda})]$ $\gamma^{5})\nu^{\lambda}$ + $(\overline{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2} - 1 - \gamma^{5})e^{\lambda})$ + $(\overline{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2} - 1 - \gamma^{5})u_{i}^{\lambda})$ + $(\overline{d}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}-\gamma^{5})d_{j}^{\lambda})]+\frac{iq}{2\sqrt{2}}W_{\mu}^{+}[(\overline{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})]+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda$ $\gamma^{5}C_{\lambda\kappa}d_{j}^{\kappa}$] + $\frac{ig}{2\sqrt{2}}W_{\mu}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}c_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] +$ $\frac{iq}{2\sqrt{2}}\frac{m\lambda}{M}\left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]$ $i\phi^0(\bar{e}^\lambda\gamma^5 e^\lambda)] + \frac{iq}{2M_{\star}D}\phi^+[-m_d^{\kappa}(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa})]$ $\gamma^{5}d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\overline{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\overline{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}] \frac{g m_{\alpha}^{\lambda}}{2M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) - \frac{g m_{\alpha}^{\lambda}}{2M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig m_{\alpha}^{\lambda}}{2M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{ig m_{\alpha}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{2}})X^{0} + \bar{Y}\partial^{2}Y +$ $igc_wW^+_\mu(\partial_\mu \overline{X}^0X^- - \partial_\mu \overline{X}^+X^0) + igs_wW^+_\mu(\partial_\mu \overline{Y}\overline{X}^- - \partial_\mu \overline{X}^+Y) +$ $igc_wW^{\mu}_{\mu}(\partial_{\mu}\bar{X}^-X^0 - \partial_{\mu}\bar{X}^0X^+) + igs_wW^{-}_{\mu}(\partial_{\mu}\bar{X}^-Y - \partial_{\mu}\bar{Y}X^+) +$ $igc_w Z^0_\mu(\partial_\mu \hat{X}^+ X^+ - \partial_\mu \hat{X}^- X^-) + igs_w A_\mu(\partial_\mu \hat{X}^+ X^+ - \partial_\mu \hat{X}^- X^-) \frac{1}{2}gM[\bar{X}^+X^+H + \bar{X}^-X^-H + \frac{1}{c_0^2}\bar{X}^0X^0H] + \frac{1-2c_0^2}{2c_0}igM[\bar{X}^+X^0\phi^+ - \frac{1}{2}c_0^2h]$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2m}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}$ $\bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The Standard Model

Standard Model Lagrangian Density

 $- \tfrac{1}{2} \partial_\nu g^a_\mu \partial_\nu g^a_\mu - g_s f^{abc} \partial_\mu g^a_\nu g^b_\mu g^c_\nu - \tfrac{1}{4} g^2_s f^{abc} f^{adc} g^b_\mu g^c_\nu g^d_\mu g^e_\nu +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_j^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^aG^bg_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^2 W^+_\mu W^-_\mu - \frac{1}{2} \partial_\nu Z^0_\mu \partial_\nu Z^0_\mu - \frac{1}{2^{*2}} M^2 Z^0_\mu Z^0_\mu - \frac{1}{2} \partial_\mu A_\nu \partial_\mu A_\nu - \frac{1}{2} \partial_\mu H \partial_\mu H \frac{1}{2}m_h^2H^2 - \partial_\mu\phi^+\partial_\mu\phi^- - M^2\phi^+\phi^- - \frac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0 - \frac{1}{2\kappa^2}M\phi^0\phi^0 - \beta_h[\frac{2M^2}{\kappa^2} +$ $\begin{array}{l} W^-_\mu \partial_\nu W^+_\mu) + A_\mu (W^+_\nu \partial_\nu W^-_\mu - W^-_\nu \partial_\nu W^+_\mu)] - \frac{1}{2} g^2 W^+_\mu W^-_\mu W^+_\nu W^-_\nu + \\ \frac{1}{2} g^2 W^+_\mu W^-_\nu W^+_\mu W^-_\nu + g^2 c^2_w (Z^0_\mu W^+_\mu Z^0_\nu W^-_\nu - Z^0_\mu Z^0_\mu W^+_\nu W^-_\nu) + \end{array}$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})]$ $W^+_{\nu}W^-_{\mu}) - 2A_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}] - g\alpha[H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-] \frac{1}{2}g^{2}O_{h}[H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})]+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]$ $\phi^+\partial_\mu H)]+\frac{1}{2}g\frac{1}{\alpha}(Z^0_\mu(H\partial_\mu\phi^0-\phi^0\partial_\mu H)-ig\frac{g^2_\mu}{\alpha}MZ^0_\mu(W^+_\mu\phi^--W^-_\mu\phi^+)+$
$$\begin{split} & igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1 - 2 c_w^2}{2 c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + \\ & igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2 \phi^+ \phi^-] - \end{split}$$
 $\frac{1}{4}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2}{c_\mu} Z^0_\mu \phi^0 (W^+_\mu \phi^- +$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{2}}{c_{\nu}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$
$$\begin{split} W^-_{\mu}\phi^+) + \frac{1}{2}ig^2 s_w A^{\mu}_{\mu}H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) - g^2 \frac{s_w}{c_w}(2c_w^2 - 1)Z^0_{\mu}A_{\mu}\phi^+\phi^- - g^1 s_w^2 A_{\mu}A_{\mu}\phi^+\phi^- - \overline{e}^{\lambda}(\gamma\partial + m_e^{\lambda})e^{\lambda} - \overline{\nu}^{\lambda}\gamma\partial\nu^{\lambda} - \overline{u}^{\lambda}_{j}(\gamma\partial + m_w^{\lambda})u^{\lambda}_{j} - \overline{d}^{\lambda}_{j}(\gamma\partial + m_w^{\lambda}$$
 m_d^{λ} $d_i^{\lambda} + igs_w A_\mu [-(\bar{e}^{\lambda}\gamma e^{\lambda}) + \frac{2}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) + igs_w) + \frac{2}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{ig}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) + igs_w) + \frac{2}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{1}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) + igs_w) + \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{1}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) + igs_w) + \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{1}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) + igs_w) + \frac{1}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{u}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{1}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) + igs_w) + \frac{1}{3}(\bar{u}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{1}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) + igs_w) + \frac{1}{3}(\bar{u}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{1}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) + igs_w) + \frac{1}{3}(\bar{u}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{1}{4m}Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + igs_w) + igs_w) + \frac{1}{$ $\gamma^{5})\nu^{\lambda}$ + $(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2} - 1 - \gamma^{5})e^{\lambda})$ + $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2} - 1 - \gamma^{5})u_{i}^{\lambda})$ + $(\overline{d}_{j}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}-\gamma^{5})d_{j}^{\lambda})]+\frac{iq}{2\sqrt{2}}W_{\mu}^{+}[(\overline{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\overline{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda}$ $\gamma^{5}C_{\lambda\kappa}d_{j}^{\kappa}$] + $\frac{ig}{2\sqrt{2}}W_{\mu}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] +$ $\frac{iq}{2\sqrt{2}}\frac{m\lambda}{M}\left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]-\frac{q}{2}\frac{m\lambda}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right]$ $i\phi^0(\bar{e}^\lambda\gamma^5 e^\lambda)] + \frac{iq}{2M_{\star}D}\phi^+[-m_d^{\kappa}(\bar{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa})]$ $\gamma^{5}d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\overline{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\overline{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}] \frac{g m_{\alpha}^{\lambda}}{2M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda}) - \frac{g m_{\alpha}^{\lambda}}{2M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig m_{\alpha}^{\lambda}}{2M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{ig m_{\alpha}^{\lambda}}{2M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) +$ $\tilde{X}^{+}(\partial^{2} - M^{2})X^{+} + \tilde{X}^{-}(\partial^{2} - M^{2})X^{-} + \tilde{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{2}})X^{0} + \tilde{Y}\partial^{2}Y +$ $igc_wW^+_\mu(\partial_\mu \overline{X}^0X^- - \partial_\mu \overline{X}^+X^0) + igs_wW^+_\mu(\partial_\mu \overline{Y}X^- - \partial_\mu \overline{X}^+Y) +$ $igc_wW^{\mu}_{\mu}(\partial_{\mu}\bar{X}^-X^0 - \partial_{\mu}\bar{X}^0X^+) + igs_wW^{-}_{\mu}(\partial_{\mu}\bar{X}^-Y - \partial_{\mu}\bar{Y}X^+) +$ $igc_w Z^0_\mu (\partial_\mu X^+ X^+ - \partial_\mu X^- X^-) + igs_w A_\mu (\partial_\mu X^+ X^+ - \partial_\mu X^- X^-) \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{0}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{0}^{2}}{2c_{0}}igM[\bar{X}^{+}X^{0}\phi^{+} \bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2m}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+}$ $\bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

 $T = -1/4 F_{\mu\nu} F^{\mu\nu}$ $+i\Psi B\Psi + h.c.$ + $\Psi_i y_{ij} \Psi_j \Phi$ + h.c. $+ |D_{\mu}\Phi|^2 - V(\Phi)$

Arial view of CERN and the Large Hadron Collider

CERN now has Observer Status in the General Assembly of the UN

Getting around in the Large Hadron Collider

LHC magnets operate at 1.9 K 1232 dipoles (8.4 T, 34 t) 392 quadrupoles

The ATLAS detector at the LHC

The ATLAS detector

ATLAS cavern

Barrel Toroids all installed (Nov 2005)

Moving the calorimeters in place

Closing of LHC beam pipe (16 June 2008)

ATLAS components and Canada

ATLAS lab at UVic during construction

Feedthrough tests at CERN

ATLAS components and Canada

http://atlas.ch

A view inside the liquid-argon calorimeter endcap. The circular inner bore of the EMEC, front and rear HEC wheels.

The ATLAS Collaboration

- 38 countries
- 174 institutions
- 3000 scientific participants
 - about 1000 students

ATLAS and Canada

Alberta Carleton McGill Montréal SFU SFU Toronto TRIUMF UBC Victoria York

ATLAS celebrated its 20th anniversary on Oct 1st 2012

- Over 150 Canadian scientists participate in the ATLAS experiment
- ATLAS Canada Collaboration
- Founded in 1992
- Spokesperson (07-)
- Deputy
- Physics Coordination

- ML, UVic
- Rob McPherson, UVic/IPP
- Richard Teuscher, UofT/IPP
- Bernd Stelzer, SFU
- Computing Coordination Reda Tafirout, TRIUMF
- Contributions to the ATLAS detector construction
 - Calorimetry, cryogenics, electronics, trigger, ...
- Contributions to the LHC construction (TRIUMF)
- TRIUMF, Canada's nuclear and particle physics laboratory located in Vancouver
 - http://www.triumf.ca/

Particle identification in ATLAS

Historical Picture

The WWW was invented at CERN in March 1989

Historical Picture

The WWW was invented at CERN in March 1989

The LHC was already a hot topic!

The first photographic image on the Web in 1992!

Worldwide LHC Computing Grid

Store, distribute and analyze the ~25 Petabytes (25 million Gigabytes) of data annually generated by the LHC

Experimental challenges

- 20 million beam crossings per second!
- many collisions per beam crossing!

 $Z \rightarrow \mu^+ \mu^-$ event with 25 vertices 2^{-1}

the **Higgs boson**: the missing piece

Spin 0

A new type of particle! A new force of nature! Proton-proton Collision in the ATLAS Experiment

Production of the Higgs particle decaying to two Photons

http://www.atlas.ch/multimedia/a-higgs-particle-decaying-2-photons.html

Higgs decays

The Higgs particle is predicted to decay in different ways

Promising signatures:

~0.23% $H \to \gamma \gamma$ ~0.02% $H \to Z Z^{(*)} \to 4\ell$ e or μ pairs

The mass of the Higgs particle can be obtained from the measurement of its decay products

$H \rightarrow 4 \text{ muons } ?$

$H \rightarrow 4$ leptons

$$H \rightarrow \gamma \gamma$$
 ?

4 July 2012 CERN and Melbourne

Chapatte, blogs.denverpost.com

the **Higgs boson**: the missing piece

the new particle appears to be a Higgs Boson

A new force of nature!!!

If it's the Higgs, is that it?

"Our future discoveries must be looked for in the 6th place of decimals." Albert A. Michelson, 1894

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement." William Thomson (Lord Kelvin), 1900

Subatomic Smash: The Quest for the Higgs Boson

