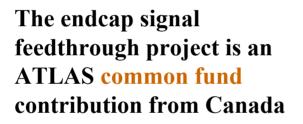
ATLAS Endcap Signal Feedthrough Project

NSERC Review TRIUMF, Jan 9th 2000

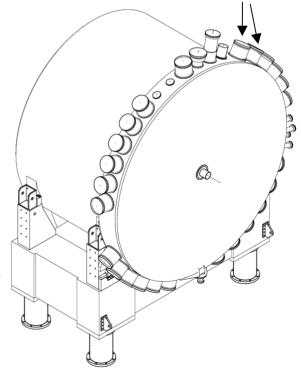
- Overview of the Project
- Design
- Mechanical Components
- Electrical Components
- Assembly
- Quality Control
- Prototypes and Models
- Milestones and Schedule
- Budget and Management
- Conclusions

Michel Lefebvre University of Victoria Physics and Astronomy

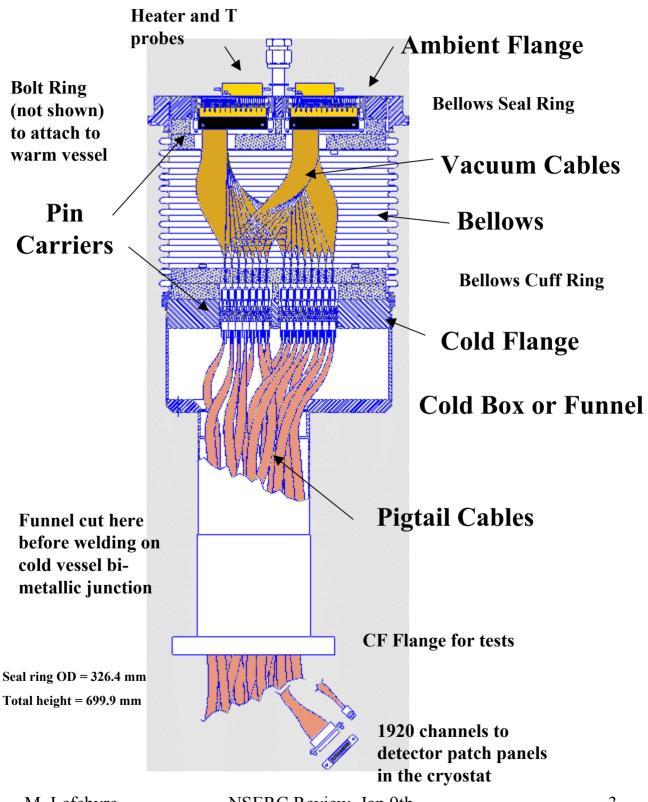

Overview of the Project

ATLAS liquid argon calorimetry has over 180k signal channels which must come through the cryostats.

Each feedthrough unit carries 1920 electrical channels.

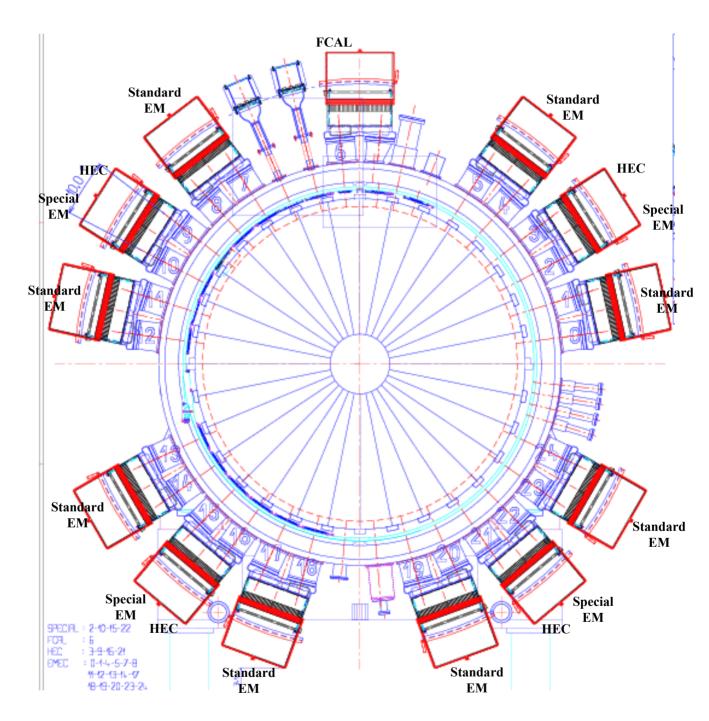

Barrel: 64 feedthrough units

Endcap: 50 feedthrough units total


Part of the ATLAS Cryostat and Cryogenics Project (Leader: Pierre Pailler)

Production Readiness Review successfully passed at CERN on Jan 29th 1999

One endcap cryostat shown during assembly


Overview of the Project Overall Design

M. Lefebvre

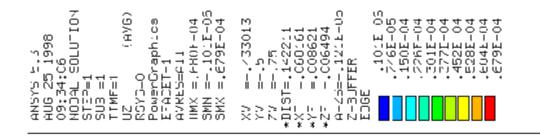
NSERC Review, Jan 9th 2000

Overview of the Project Position of Units on Cryostat

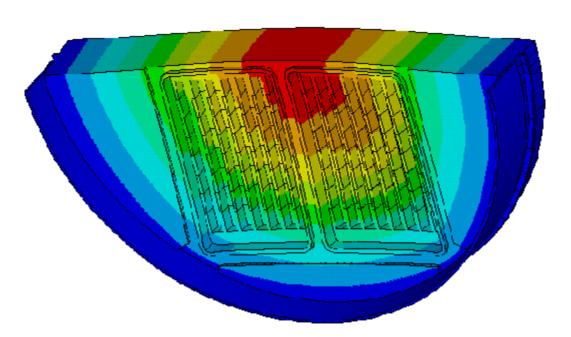
Design Design Considerations

The feedthrough design must satisfy many constraints:

- gas and liquid pressure loads
- stresses caused by temperature gradients
- stresses caused by the cryostat thermal deformations
- welding of the components must not damage the pin carriers
- heat flow through the units must be kept at an acceptable level
- the electrical properties must be adequate
- radiation environment

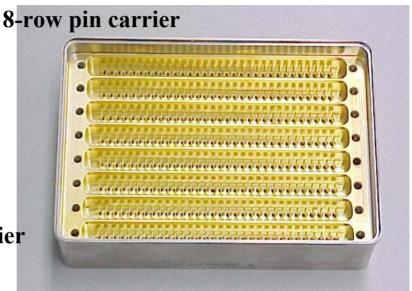

Specific to the endcap signal feedthroughs:

- special cables required for HEC preamplifier power:
 - special pigtails
 - special vacuum cables
 - the heat flow for these special cables will be higher than for normal signal cables, but must nevertheless be kept at a reasonable level
- there are 4 different types of endcap feedthroughs
 - 32 "Standard EM"
 - 8 "Special EM"
 - 8 "HEC (HEC and some EM)"
 - 2 "FCAL"


Design Finite Element Analysis

Extensive FEA analysis of the feedthrough components and assembly has been performed and reviewed

e.g., Cold Flange Deflection under 3.5 bar pressure load

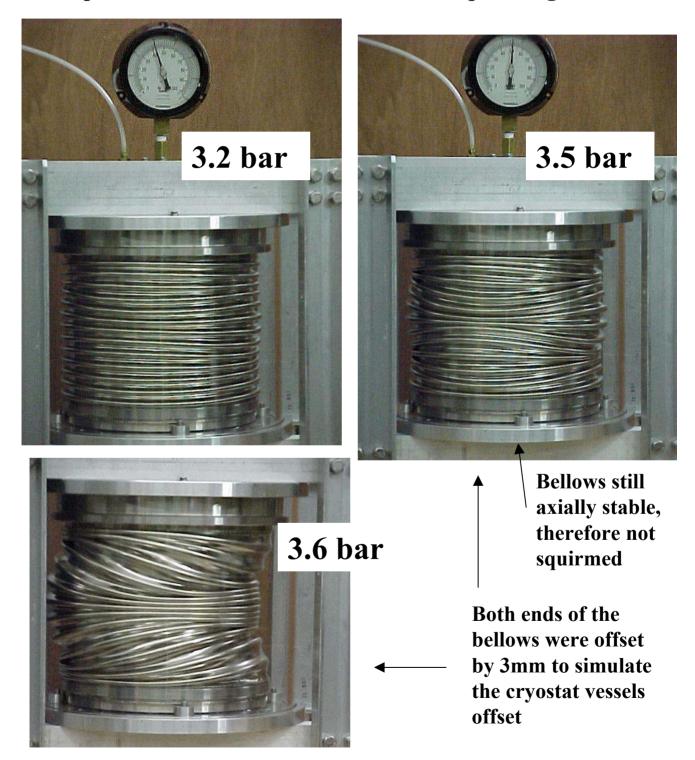

maximum deflection of 68 microns



Mechanical Components Pin Carriers and Flanges

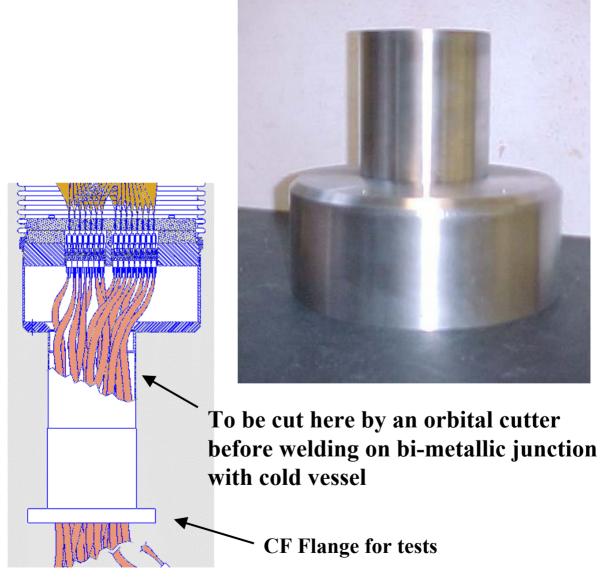
A pin carrier is a low inclusion stainless steel matrix containing 7x64 or 8x64 electrical pins held in glass inserts

Pins and carrier gold plated

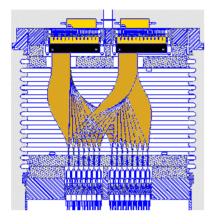


4 pin carriers are welded on the ambient flange and the cold flange, all made of low inclusion SS

Bellows volume pumping hole


Mechanical Components Bellows Assemblies

Bellows assemblies are designed to withstand up to the exceptional condition of 3.5 bar without squirming

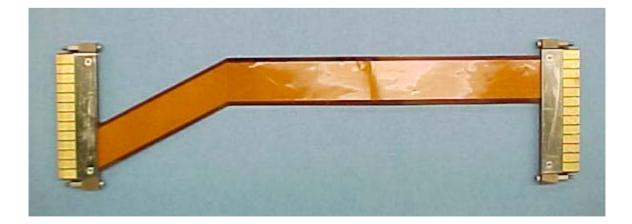


Mechanical Components Cold Box or Funnel

- Mechanically connects the cold flange to the cold vessel, hence part of the pressure vessel
- Assymetric design required because of space constraints
- FEA Designed to withstand the inter-vessel relative movements

Electrical Components Vacuum Cables

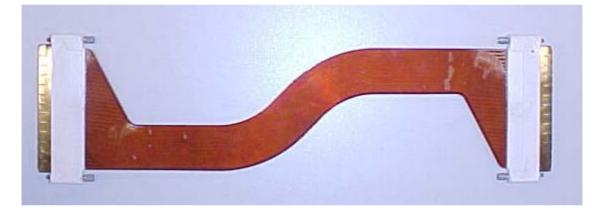
Carry the electrical channels from the ambient flange to the cold flange. Some carry calibration lines

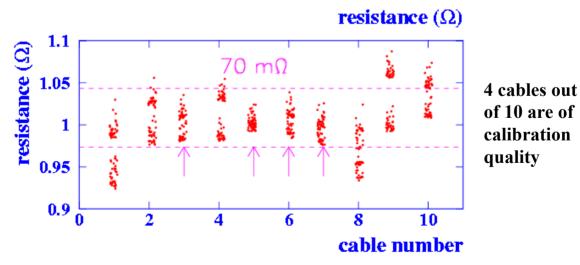

Inaccessible after the bellows are welded to the flanges

Each vacuum cable must satisfy many demanding mechanical and electrical requirements

Successful R&D of vacuum cables in Canada with CRPP (E. Neuheimer- STC, M. Fincke-Keeler)

Over 100 cables produced and qualified

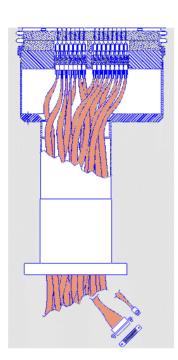

R&D critical in the evolution of the design and expertise.



Electrical Components Vacuum Cables

RFQ replies received fall 1999 from STC and FCI-Berg FCI-Berg prototype cables received Nov 99

- mechanical qualification near completion
- electrical qualification passed
- PRR at the factory Dec 99



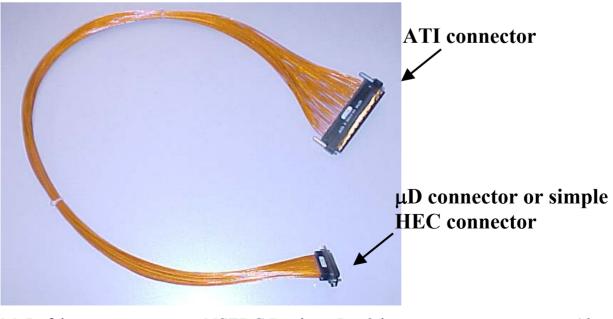
Contract to be awarded Jan 2000

NSERC Review, Jan 9th 2000

Electrical Components Pigtail Cables

Electrically connects the cold flange to the detector patch panel

Located in the cryostat cold vessel


Cannot be disconnected from a completed feedthrough

Developed by Orsay and Axon for all of ATLAS, along with other cables

6 different types of signal pigtails required in the endcap feedthrough

MOU signed between Orsay and ATLAS-Canada Dec 98

Orsay provides QA on cables

Electrical Components Low Voltage Cables

Each endcap cryostat has 4 HEC feedthroughs which must supply the power for the HEC preamplifiers located in the LAr. This corresponds to a total of 40A in and out through each HEC feedthroughs

Low Voltage Vacuum Cables have been developed (M. Fincke-Keeler):

Carry the required currents without overheating Allow minimum thermal path

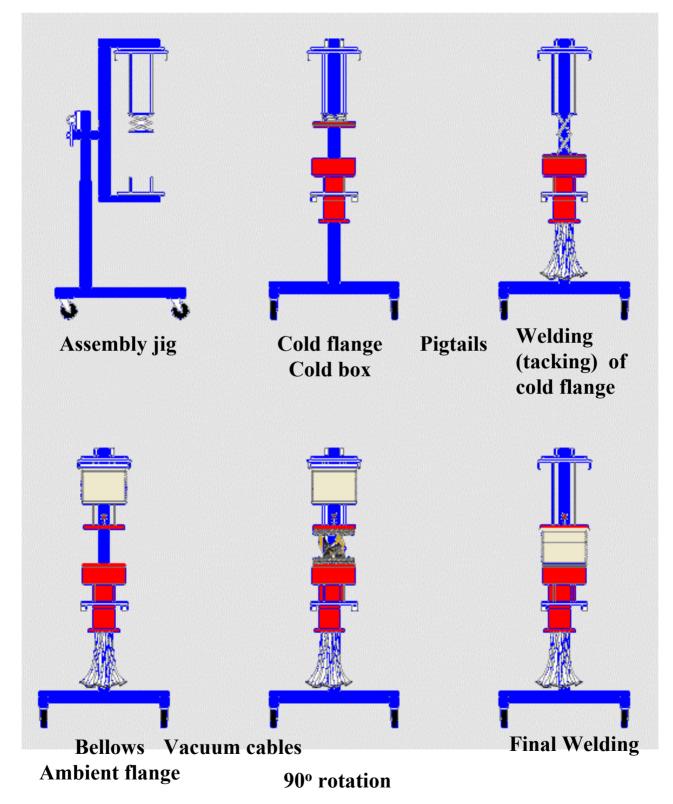
Wire harness using 3 different wire gauges:

• AWG 24 - 900mA capacity

- AWG 26 550mA capacity
- AWG 28 400mA capacity

Detail thermal tests have been performed in Sep 99 in Victoria with HEC MPI personel ATI connectors Polyimide insulation for wires

 $T_{\rm max} \approx 40^{\circ} C$

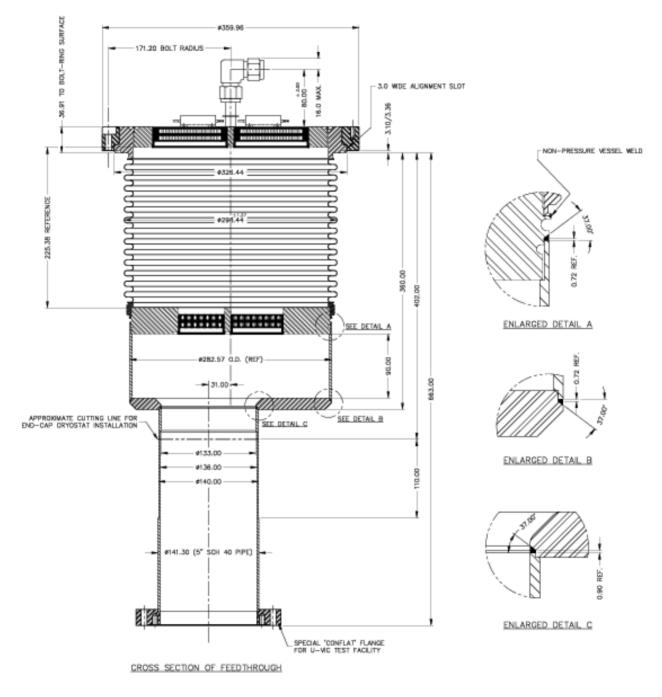


Heat leakage: 2.21W/cable 18.7 W/HEC feedthrough with 4 LV connections

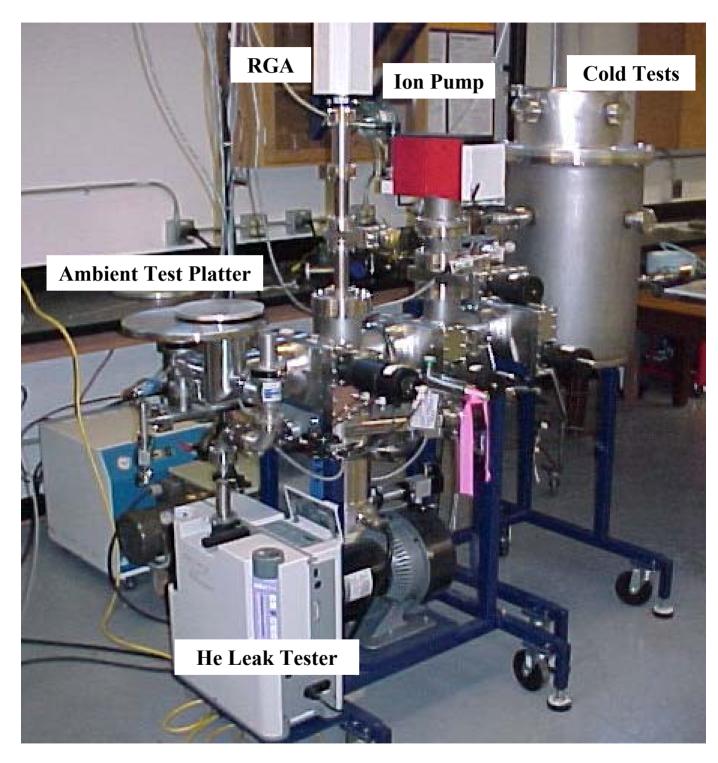
Low Voltage Pigtails have also been developed (M. Fincke-Keeler)

NSERC Review, Jan 9th 2000

Assembly Assembly Sequence



Rotation around two axes for assembly and welding



The cold box assembly is part of the pressure vessel Negotiations with TIS completed Dec 99 Detailed Welding Plan produced Qualification of welds and welders done by Feb 00

NSERC Review, Jan 9th 2000

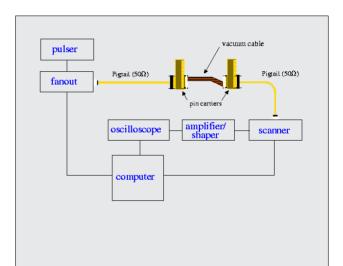
Quality Control Vacuum Test Station

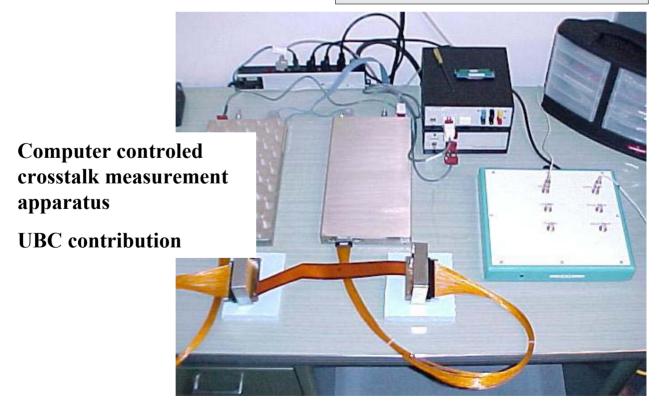
Quality Control Cold Tests Station

Quality Plan includes full cold tests

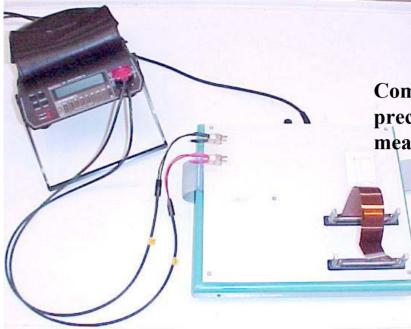
Prototype being inserted in the cold vacuum test station

Quality Control Temperature Cycling Apparatus

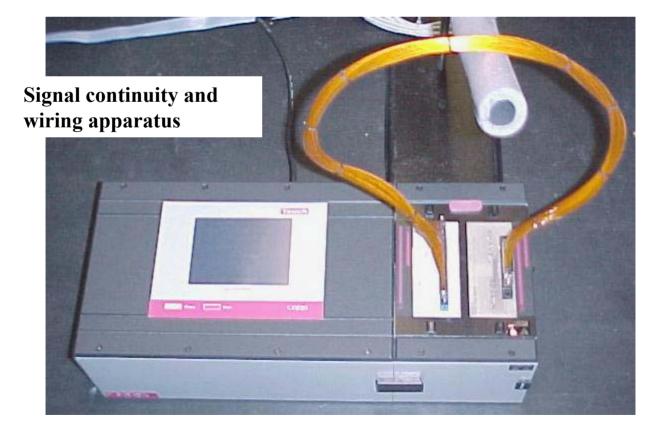

Controled temperature cycling of pin carriers


Quality Control Electrical Test Stations

Quality Plan includes detailed electrical tests at various stages of assembly

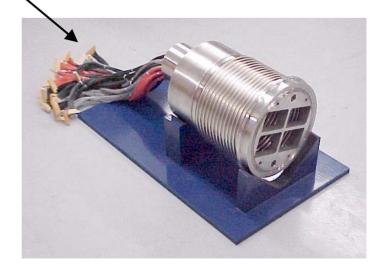

before assembly welds

continuity cold tests continuity cross talk final electrical tests precision resistance cross talk



Quality Control Electrical Test Stations

Computer controled precision resistance measurement apparatus


Prototypes and Models

Prototypes and Models have been crucial:

feedthrough design completion parts selection asembly jigs design and development vacuum and electrical testing equipment and procedure

- Unit model (1998)
- Prototype with dismountable flange -
- Insertion model
- Pressure test vessel
- Full prototype (Jan 00)

Milestones and Schedule

General

• Production Readiness Review

• Passed in Jan 99

• Leak Test Station and Electric Test Station

• Fully operational since Fall 98

• Models and Prototypes

- Model done in 98
- Prototype with dismountable flange done in 99
- Insertion model done in Dec 99
- TIS pressure test vessel done by Feb 00
- Full prototype done in Jan 00

• Welding

- Welding Plan completed in Dec 99
- Agreement with TIS finalised in Dec 99
- Qualification of welder done by Feb00

• Production of Feedthrough Units

- First feedthrough unit done in May 00
- Production of 25 units plus 3 spares by Jun 01
- Shipment and testing at CERN: Jan 01 Jun 01
- Installation on cryostat : May 01 Jul 01
- Production of 25 units plus 3 spares by Apr 02
- * Shipment and testing at CERN: Nov 01 Apr 01
- Installation on cryostat : Mar 02 May 02

Milestones and Schedule

Mechanical Components

• LowInclusion Steel (Timkin)

- **P.O. out in Jul 99**
- Reception started in Oct 99 and resumed in Dec 99
- Pin Carriers (Glasseal)
 - P.O. out in Jun 99
 - Reception started in Oct 99

• Cold and Ambient Flanges (EBCO)

- P.O. out in Nov 99
- Reception in Mar 00

• Funnel Parts and Bolts Rings (SICOM)

- P.O. out in Nov 99
- Reception completed in Mar 00

• Funnel Assemblies (Spec. Mech.)

- P.O. out in Jan 00
- Reception to start in Apr 00

• Seal and Cuff Rings for Bellows (SICOM)

- P.O. out in Nov 99
- Reception completed in Feb 00

• Bellows Assemblies (BOA)

- P.O. out in Jan 00
- Reception to start in Apr 00
- Other Components
 - RF Gasket, Pipe fittings, Insulation, Pigtail restraint, Heaters
 - Reception to start in Jan 00

Milestones and Schedule

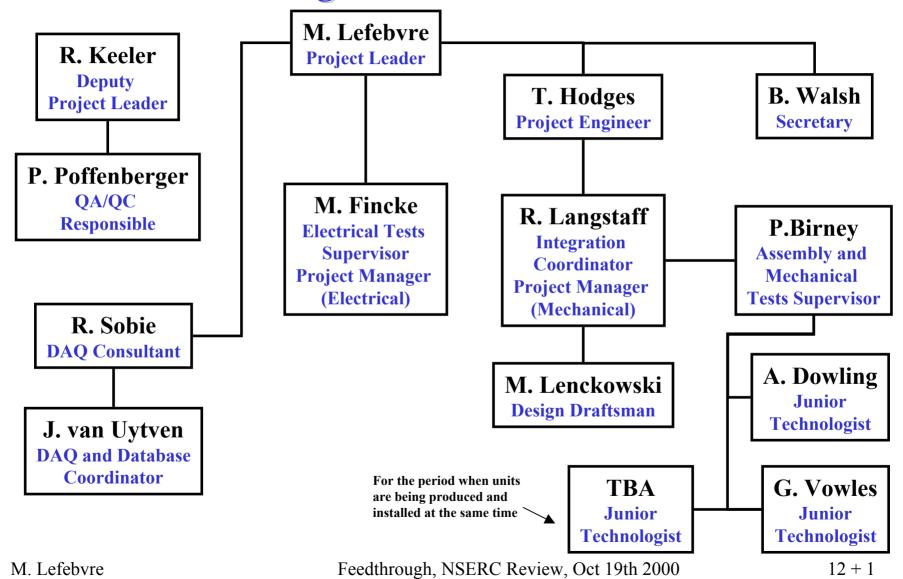
Electrical Components

• Vacuum Cables

- RFQ reply from STC and FCI-Berg during fall 99
- STC cables passed qualification
- FCI-Berg cables qualification finalised Dec99 Jan 00
- Final contract to be awarded in Jan 00
- Reception to start in Apr 00

• Pigtail Cables (Axon via Orsay)

- MOU with Orsay signed in Dec 98
- Reception at Orsay started in Nov 99
- Reception in Victoria to start in Jan 00

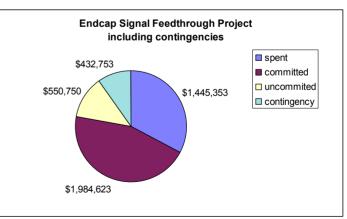

• Other Cables (Axon)

- RFQ reply received
- P.O. out in Jan 00

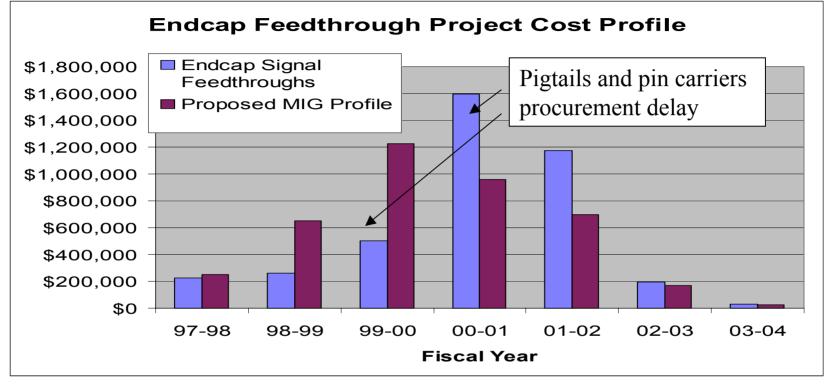
• Heaters

• Design finalised before Apr 00

Budget and Management Organizational Chart

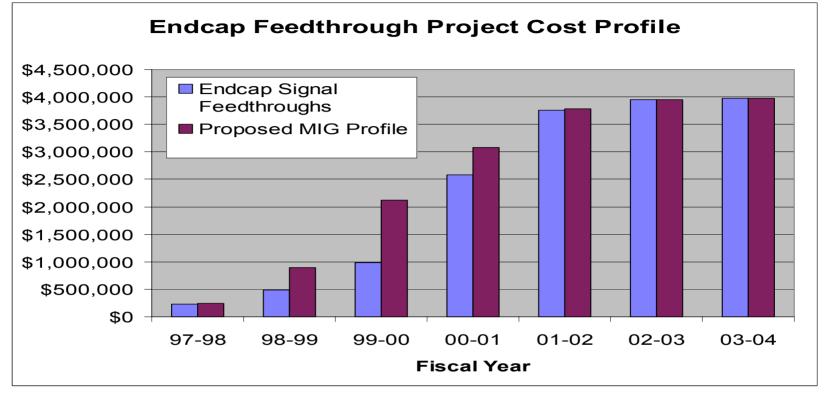


Budget and Management Budget Summary


			Sep 00			MIG	COST PROP	ILE				Sep 00			
PBS	WBS	Description	00-01	97-98	98-99	99-00	00-01	01-02	02-03	03-04	MIG	spent	c o mmit	unco mmit	contingency
			\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	%	%	%	\$CAN
4	1	Endcap Signal Feedthroughs	\$455,694	\$224,375	\$261,707	\$503,577	\$1,594,824	\$1,174,668	\$192,783	\$28,793	\$3,980,726	36	50	14	\$432,753
4.1	2	Project Setup	\$59,648	\$156,386	\$202,816	\$214,831	\$162,454	\$52,671	\$15,574	\$8,276	\$813,008	78	6	16	\$38,329
4.1.1	3	Leak Test Setup	\$37,675	\$102,521	\$29,420	\$6,952	\$45,374	\$19,806	\$9,810	\$4,105	\$217,989	81	0	19	\$9,533
4.1.2	3	Electric Test Setup	\$19,831	\$6,109	\$22,252	\$32,822	\$60,199	\$15,174	\$3,500	\$1,095	\$141,151	57	0	43	\$14,394
4.1.3	3	Data Acquisition System	\$1,003	\$15,198	\$5,308	\$4,690	\$1,400	\$11,585	\$700	\$2,431	\$41,313	63	1	36	\$3,713
4.1.4	3	FT Assembly Tools	\$0	\$0	\$10,135	\$591	\$44,724	\$840	\$211	\$0	\$56,500	19	76	5	\$7,144
4.1.5	3	FT Prototypes	-\$2,636	\$32,558	\$135,094	\$163,028	\$4,057	\$101	\$0	\$218	\$335,055	98	2	0	\$1,077
4.1.6	3	Misc Project Setup Items	\$3,775	\$0	\$607	\$6,748	\$6,700	\$5,165	\$1,353	\$427	\$21,000	53	0	47	\$2,467
4.2	2	FT Series Assemblies	\$333,154	\$0	\$0	\$142,211	\$1,274,870	\$913,497	\$0	\$0	\$2,330,579	20	69	11	\$350,367
4.2.1	3	Mechanical Components	\$120,328	\$0	\$0	\$141,714	\$421,821	\$490,111	\$0	\$0	\$1,053,647	25	63	12	\$129,310
4.2.2	3	Electrical Components	\$212,153	\$0	\$0	\$399	\$832,049	\$362,483	\$0	\$0	\$1,194,932	18	77	5	\$203,318
4.2.3	3	Shipping Crates	\$672	\$0	\$0	\$98	\$21,000	\$60,902	\$0	\$0	\$82,000	1	21	78	\$17,739
4.3	2	Test Cryostat Signal FT	\$0	\$58,428	\$0	\$0	\$0	\$0	\$0	\$0	\$58,428	100	0	0	\$0
4.4	2	Manpower	\$62,892	\$9,561	\$58,891	\$146,534	\$157,500	\$208,500	\$177,209	\$20,517	\$778,712	36	42	22	\$44,057
4.4.1	3	Salaries and Benefits	\$57,253	\$9,561	\$55,092	\$129,328	\$131,000	\$185,000	\$156,268	\$11,799	\$678,048	37	48	15	\$26,341
4.4.2	3	Consultation and Travel	\$2,505	\$0	\$1,016	\$17,206	\$19,500	\$18,500	\$18,225	\$8,718	\$83,164	25	4	71	\$14,821
4.4.3	3	Other	\$3,134	\$0	\$2,784	\$0	\$7,000	\$5,000	\$2,716	\$0	\$17,500	34	0	66	\$2,896

Contingencies total \$433k and are dominated by exchange rates:

- +15% on 1.52 \$CAN/\$US (pin carriers and vacuum cables)
- +25% on 0.200 \$CAN/FF (pigtails)
- +15% on 0.860 \$CAN/CHF (orbital cutter contribution)
- The budget total net of contingencies is \$3.98M
 - 36% of which has been spent (Sep 00)
 - 50% of which has been committed (Sep 00)


Budget and Management Budget Profile

	97-98	98-99	99-00	00-01	01-02	02-03	03-04	Total
Sep-00	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN
Budget	\$224,375	\$261,707	\$503,577	\$1,594,824	\$1,174,668	\$192,783	\$28,793	\$3,980,726
MIG spent	\$224,375	\$261,707	\$503,577	\$455,694	\$0	\$0	\$0	\$1,445,353
Proposed MIG Profile	\$249,000	\$650,000	\$1,226,880	\$960,000	\$700,000	\$170,000	\$24,846	\$3,980,726

M. Lefebvre

Budget and Management Integrated Budget Profile

	97-98	98-99	99-00	00-01	01-02	02-03	03-04	Total
Sep-00	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN
Budget	\$224,375	\$486,082	\$989,659	\$2,584,483	\$3,759,151	\$3,951,933	\$3,980,726	\$3,980,726
MIG spent	\$224,375	\$486,082	\$989,659	\$1,445,353	\$1,445,353	\$1,445,353	\$1,445,353	\$1,445,353
Proposed MIG Profile	\$249,000	\$899,000	\$2,125,880	\$3,085,880	\$3,785,880	\$3,955,880	\$3,980,726	\$3,980,726

M. Lefebvre

Budget and Management Series Assemblies Details

						MIG COST	PROFILE							
PBS	WBS	Description	97-98	98-99	99-00	00-01	01-02	02-03	03-04	MIG	spent	commit	unco mmit	contingency
			\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	%	%	%	\$CAN
4	1	Endcap Signal Feedthroughs	\$224,375	\$261,707	\$503,577	\$1,594,824	\$1,174,668	\$192,783	\$28,793	\$3,980,726	36	50	14	\$432,753
4.1	2	Project Setup	\$156,386	\$202,816	\$214,831	\$162,454	\$52,671	\$15,574	\$8,276	\$813,008	78	6	16	\$38,329
4.2	2	FT Series Assemblies	\$0	\$0	\$142,211	\$1,274,870	\$913,497	\$0	\$0	\$2,330,579	20	69	11	\$350,367
4.2.1	3	Mechanical Components	\$0	\$0	\$141,714	\$421,821	\$490,111	\$0	\$0	\$1,053,647	25	63	12	\$129,310
4.2.1.0	4	Low Inclusion Steel	\$0	\$0	\$36,585	\$27,699	\$0	\$0	\$0	\$64,284	100	0	0	\$0
4.2.1.1	4	Pin Carriers	\$0	\$0	\$37,019	\$175,000	\$469,611	\$0	\$0	\$681,630	4	84	12	\$106,130
4.2.1.2	4	Warm Flanges	\$0	\$0	\$0	\$20,818	\$0	\$0	\$0	\$20,818	100	0	0	\$0
4.2.1.3	4	Cold Flanges	\$0	\$0	\$0	\$21,235	\$0	\$0	\$0	\$21,235	100	0	0	\$0
4.2.1.4	4	Bellow Assemblies	\$0	\$0	\$20,564	\$102,369	\$0	\$0	\$0	\$122,932	53	47	0	\$8,662
4.2.1.5	4	Bolt Flanges	\$0	\$0	\$18,370	\$0	\$0	\$0	\$0	\$18,370	100	0	0	\$0
4.2.1.6	4	Funnel Assemblies	\$0	\$0	\$12,813	\$52,160	\$0	\$0	\$0	\$64,973	42	58	0	\$3,773
4.2.1.7	4	Pipe Fittings	\$0	\$0	\$0	\$500	\$500	\$0	\$0	\$1,000	0	10	90	\$235
4.2.1.8	4	RF Gasket	\$0	\$0	\$0	\$1,200	\$0	\$0	\$0	\$1,200	0	0	100	\$300
4.2.1.9	4	Insulation	\$0	\$0	\$4,161	\$839	\$0	\$0	\$0	\$5,000	83	0	17	\$210
4.2.1.10	4	Welds	\$0	\$0	\$0	\$20,000	\$20,000	\$0	\$0	\$40,000	0	0	100	\$10,000
4.2.1.11	4	CF Flanges	\$0	\$0	\$12,203	\$0	\$0	\$0	\$0	\$12,203	100	0	0	\$0
4.2.2	3	Electrical Components	\$0	\$0	\$399	\$832,049	\$362,483	\$0	\$0	\$1,194,932	18	77	5	\$203,318
4.2.2.1	4	Pig Tail Cables	\$0	\$0	\$192	\$200,000	\$299,803	\$0	\$0	\$499,995	0	100	0	\$124,866
4.2.2.2	4	Vacuum Cables	\$0	\$0	\$0	\$510,576	\$0	\$0	\$0	\$510,576	33	67	0	\$51,500
4.2.2.3	4	Low Voltage Pigtail Cables	\$0	\$0	\$0	\$30,691	\$30,691	\$0	\$0	\$61,382	48	49	3	\$4,977
4.2.2.4	4	Low Voltage Vacuum Cables	\$0	\$0	\$0	\$19,490	\$19,490	\$0	\$0	\$38,980	5	90	5	\$5,750
4.2.2.5	4	Heaters	\$0	\$0	\$207	\$31,793	\$0	\$0	\$0	\$32,000	1	20	79	\$7,245
4.2.2.6	4	Extra HEC Pigtails	\$0	\$0	\$0	\$12,499	\$12,499	\$0	\$0	\$24,998	46	46	8	\$2,230
4.2.2.7	4	Temperature Probes	\$0	\$0	\$0	\$27,000	\$0	\$0	\$0	\$27,000	0	0	100	\$6,750
4.2.3	3	Shipping Crates	\$0	\$0	\$98	\$21,000	\$60,902	\$0	\$0	\$82,000	1	21	78	\$17,739
4.3	2	Test Cryostat Signal FT	\$58,428	\$0	\$0	\$0	\$0	\$0	\$0	\$58,428	100	0	0	\$0
4.4	2	Manpower	\$9,561	\$58,891	\$146,534	\$157,500	\$208,500	\$177,209	\$20,517	\$778,712	36	42	22	\$44,057
4.4.1	3	Salaries and Benefits	\$9,561	\$55,092	\$129,328	\$131,000	\$185,000	\$156,268	\$11,799	\$678,048	37	48	15	\$26,341
4.4.2	3	Consultation and Travel	\$0	\$1,016	\$17,206	\$19,500	\$18,500	\$18,225	\$8,718	\$83,164	25	4	71	\$14,821
4.4.3	3	Other	\$0	\$2,784	\$0	\$7,000	\$5,000	\$2,716	\$0	\$17,500	34	0	66	\$2,896

Budget and Management Project Setup Details

						MIG COST	PROFILE	6						
PBS	WBS	Description	97-98	98-99	99-00	00-01	01-02	02-03	03-04	MIG	spent		unco mmit	contingency
			\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	%	%	%	\$CAN
4	-	Endcap Signal Feedthroughs	\$224,375	\$261,707		\$1,594,824		\$192,783	\$28,793 \$8,276	\$3,980,726	36 78	50 6	14 16	\$432,753 \$38,329
4.1 4.1.1	2	Project Setup Leak Test Setup	\$156,386 \$102,521	\$202,816 \$29,420	\$214,831 \$6,952	\$162,454 \$45,374	\$52,671 \$19,806	\$15,574 \$9,810	\$0,276		81	0	10	\$36,329
4.1.1.1	4	He Leak Tester	\$29,677	\$4,368	\$0,552 \$91	\$35,000	\$2,500	\$2,310	\$1,055		91	0	9	\$1,606
4.1.1.2	4	RGA	\$17,500	φ - ,500 \$0	\$0	\$00,000 \$0	¢2,300 \$0	¢2,510 \$0	پ ۱,000 \$0		100	0	0	\$0
4.1.1.3	4	Calibrated He leaks	\$2,265	\$1,130	\$0	\$1,674	\$0	\$0 \$0	\$0		100	0	0	\$0
4.1.1.4	4	Cold Cathode / Pirani Gauges	\$6,500	\$0	\$5	\$0	\$0	\$0	\$0		100	0	0	\$0
4.1.1.5	4	Scroll Pump	\$0	\$8,219	\$0	\$0	\$8,219	\$0	\$0	\$16,438	50	0	50	\$1,233
4.1.1.6	4	Cryo Cooler	\$13,637	\$0	\$0	\$0	\$0	\$0	\$0	\$13,637	100	0	0	\$0
4.1.1.7	4	Ion Pump Parts	\$1,654	\$0	\$0	\$0	\$0	\$0	\$0		100	0	0	\$0
4.1.1.8	4	Temperature Probes	\$0	\$4,334	\$1,383	\$500	\$1,000	\$500	\$284	\$8,000	71	0	29	\$571
4.1.1.9	4	Valves	\$15,933	\$489	\$0	\$1,000	\$1,000	\$1,000	\$578		82	0	18	\$895
4.1.1.10	4	Vacuum Parts	\$6,891	\$555	\$3,109	\$3,000	\$3,000	\$3,000	\$445		57	0	43	\$2,133
4.1.1.11 4.1.1.12	4	Misc Hardware Temperature Cycling Setup	\$1,215 \$1,581	\$8,403 \$571	\$346 \$162	\$2,000 \$200	\$2,000 \$87	\$1,000 \$0	\$36 \$0		67 89	0	33 11	\$1,223 \$72
4.1.1.12		Design Station	\$5,670	\$915	\$102	\$200	\$07	\$0 \$0	\$0		100	0	0	\$72
4.1.1.14		Liquid Nitrogen	\$0,070	\$436	\$1,857	\$2,000	\$2,000	\$2,000	\$1,707	\$10,000	28	0	72	\$1,801
4.1.2		Electric Test Setup	\$6,109	\$22,252	\$32,822	\$60,199	\$15,174	\$3,500	\$1,095		57	0	43	\$14,394
4.1.2.1	4	DC Test Setup	\$0	\$14,058	\$1,746	\$8,043	\$1,000	\$1,000	\$154	\$26,000	61	0	39	\$2,102
4.1.2.2	4	Transient Test Setup	\$263	\$7,778	\$12,509	\$13,500	\$12,174	\$1,500	\$580		68	0	32	\$3,646
4.1.2.3	4	Pig Tail Cables for tests	\$5,846	\$0	\$0	\$6,676	\$0	\$0	\$0	\$12,522	100	0	0	\$0
4.1.2.4		Misc Hardware	\$0	\$417	\$3,222	\$2,000	\$2,000	\$1,000	\$361	\$9,000	49	0	51	\$1,151
4.1.2.5	4	Pig Tail Loop Cables for Tests	\$0	\$0	\$15,325	\$0	\$0	\$0	\$0		100	0	0	\$0
4.1.2.6		Digital Scope	\$0	\$0	\$20	\$29,980	\$0	\$0	\$0		0	0	100	\$7,495
4.1.3		Data Acquisition System	\$15,198	\$5,308	\$4,690	\$1,400	\$11,585	\$700	\$2,431	\$41,313	63	1	36	\$3,713
4.1.3.1 4.1.3.2	4	NT Server PC NT Client PC for DAQ	\$5,762	\$0 \$0	\$0 \$2,469	\$0 \$0	\$5,838 \$0	\$0 \$0	\$0 \$0		50 100	0	50 0	\$1,460 \$0
4.1.3.2 4.1.3.3	4	NT Licences	\$3,883 \$394	\$0 \$0	\$2,469 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0		100	0	0	\$0
4.1.3.4	4	GPIB Interface	\$787	\$0 \$0	\$1,166	\$0 \$0	\$1,047	\$0 \$0	\$0		65	0	35	\$262
4.1.3.5	4	LabView Licenses	\$3,853	\$205	\$0	\$900	\$0	\$400	\$142		89	0	11	\$146
4.1.3.6	4	Colour Printer	\$489	\$0	\$0	\$0	\$0	\$0	\$0		100	0	0	\$0
4.1.3.7	4	Printer	\$0	\$0	\$0	\$0	\$300	\$0	\$0	\$300	0	0	100	\$75
4.1.3.8	4	Misc Hard/Software and Services	\$31	\$424	\$1,055	\$500	\$400	\$300	\$290	\$3,000	55	14	30	\$271
4.1.3.9	4	NT Client PC for Controls	\$0	\$4,679	\$0	\$0	\$0	\$0	\$0	\$4,679	100	0	0	\$0
4.1.3.10	4	CAMAC controller	\$0	\$0	\$0	\$0	\$0	\$0	\$0					\$0
4.1.3.11		NT Client PC for CERN	\$29,677	\$0	\$0	\$0	\$4,000	\$0	\$2,000		0	0	100	\$1,500
4.1.4		FT Assembly Tools	\$0	\$10,135	\$591	\$44,724	\$840	\$211	\$0	-	19	76	5	\$7,144
4.1.4.1 4.1.4.2	4	Assembly Jigs	\$0 \$0	\$2,234 \$7,900	\$226 \$289	\$1,000 \$300	\$540	\$0 \$211	\$0 \$0		62 91	0	38 9	\$385
4.1.4.2 4.1.4.3	4	Welding Station Crane	\$0 \$0	\$7,900 \$0	\$209 \$76	\$300	\$300 \$0	\$211 \$0	\$0		15	0	85	\$203 \$106
4.1.4.4	4	Orbital Cutter	\$0 \$0	\$0 \$0	\$0	\$43,000	\$0 \$0	\$0 \$0	\$0		0	100	0	\$6,450
4.1.5	3	FT Prototypes	\$32,558	\$135,094	\$163,028	\$4,057	\$101	\$0	\$218		98	2	0	\$1,077
4.1.5.1	4	Model FT	\$2,289	\$775	\$0	\$0	\$0	\$0	\$0		100	0	0	\$0
4.1.5.2	4	Weld Test Flanges and Pin Carriers	\$11,815	\$4,297	\$8,650	\$909	\$0	\$0	\$217	\$25,889	98	0	2	\$143
4.1.5.3	4	Glass Pin Carriers	\$0	\$50,818	\$0	-\$2,147	\$0	\$0	\$0	\$48,671	100	0	0	\$0
4.1.5.4	4	Ceramic Pin Carriers	\$0	\$63,446	\$0	-\$2,147	\$0	\$0	\$0	\$61,299	100	0	0	\$0
4.1.5.5		Warm Flanges	\$0	\$2,497	\$221	\$0	\$0	\$0	\$0			0	0	\$0
4.1.5.6		Cold Flanges	\$0	\$2,304	\$246	\$0	\$0	\$0	\$0		100	0	0	\$0
4.1.5.7		Bellows Assemblies	\$0	\$3,654	\$10,540	\$5,510	\$0	\$0	\$0		72	28	0	\$826
4.1.5.8		Bolt Flanges	\$0 ©0	\$0	\$246	\$0 ©0	\$0 ©0	\$0 ©0	\$0		100	0	0	\$0 \$0
4.1.5.9 4.1.5.10	4	Funnel Assemblies Vacuum Cables	\$0 \$18,453	\$2,663 \$0	\$2,497 \$120,470	\$0 \$359	\$0 \$0	\$0 \$0	\$0 \$0		100 100	0	0	\$0 \$0
4.1.5.10		Low Voltage Vacuum cables	\$18,453 \$0	\$0 \$4,086	\$120,470 \$0	\$359 \$0	\$0 \$0	\$0 \$0	\$0 \$0		100	0	0	\$0 \$0
4.1.5.12		Low Voltage Pigtails	\$0 \$0	\$4,000 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0		100			\$0 \$0
4.1.5.13		Pipe Fittings	\$0 \$0	\$554	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0		100	0	0	\$0 \$0
4.1.5.14		Pigtails	\$0	\$0	\$17,934	\$397	\$0	\$0	\$0		100	0	0	\$0
4.1.5.15		Insulation	\$0	\$0	\$2,225	\$1,175	\$101	\$0	\$0			24	3	\$108
4.1.6		Misc Project Setup Items	\$0	\$607	\$6,748	\$6,700	\$5,165	\$1,353	\$427			0	47	\$2,467
4.2	-	FT Series Assemblies	\$0	\$0		\$1,274,870	\$913,497	\$0		\$2,330,579		69	11	\$350,367
4.3		Test Cryostat Signal FT	\$58,428	\$0	\$0	\$0	\$0	\$0	\$0			0	0	\$0
4.3.1		Pin Carriers	\$56,960	\$0	\$0	\$0	\$0	\$0	\$0	1 A A A A A A A A A A A A A A A A A A A	100	0	0	\$0
4.3.4		Bolt Flanges	\$1,468	\$0	\$0	\$0	\$0	\$0	\$0			0	0	\$0
4.4	2	Manpower	\$9,561	\$58,891	\$146,534	\$157,500	\$208,500	\$177,209	\$20,517	\$778,712	36	42	22	\$44,057

M. Lefebvre

Budget and Management Responsibilities

- Design
- Fabrication
 - Signal Pigtails purchased from Orsay
- Commissioning
- Transport
- Reception
 - Electrical and ambient vacuum testing
 - Leak tester provided by ATLAS CERN
- Electrical tests after installation
- Assistance during installation
 - Up to SF50k towards the cost of an orbital cutter
 - Assistance during welding on the cryostat
 - Assistance for leak testing during/after installation

• Still under discussion

- Who covers cost of T probes
- Manpower to connect warm cables to ambient flange

Conclusions Endcap Signal Feedthrough Project

- Crucial component of ATLAS LAr
- Complex and manpower intensive
- Production has started
 - First unit constructed in July 00
 - Proceeding cautiously with emphasis on QA/QC
- Extensive QC programme further developed
- All major purchase orders out
- All components (except pigtails, pin carriers and a few cables) likely to be in hand by the end of FY 00-01
- Production rate still in line with cryostat schedule
 - Pin carrier procurement on critical path
 - To be reassessed when pin carrier procurement reaches full rate
- Budget within the allocated MIG
 - Built-in contingencies
 - Purchase of FF for pigtails under investigation
 - Requires close monitoring