ATLAS Endcap Signal Feedthrough Project

Overview

Status

- Procurement of Components
- Feedthrough Production
- Shipment to CERN
- Reception Tests at CERN
- Schedule
- QA/QC
- Budget and Management
- Conclusions

NSERC Review TRIUMF 14th December 2001

Overview

ATLAS liquid argon calorimetry has over 180k signal channels which must come through the walls of the cryostats

Each feedthrough unit carries 1920 electrical channels.

Barrel: 64 feedthrough units (+spares)

Endcap: 50 feedthrough units total (+5 spares)

The endcap signal feedthrough project is an ATLAS common fund contribution from Canada (CHF 3360k CORE)

Part of the ATLAS Cryostat and Cryogenics Project

Extensively reviewed

ATLAS reviews

Project Review, BNL, Jun 12-13 1997 Baseline Design review CERN, Oct 13th 1997 Production Readiness Review, CERN, Jan 29th 1999 Activity/Systems Status Overview, CERN, Feb 11-12 2001

NSERC reviews TRIUMF, Jan 9 2000 TRIUMF, Oct 19 2000 TRIUMF, Dec 14 2001

Overview

Seal ring OD = 326.4 mm

Total height = 699.9 mm

Procurement of Components

pin carriers

• Production halted August 2000 due to low inclusion steel problems

• Production restarted February 2001. All problems solved.

• HCC/GSP followed very closely, coordinated by Tom Muller at BNL

- UVic has received 270 units so far
- Delivery rate not an issue anymore

• BNL has received all the units required for the barrel feedthroughs: expect delivery rate to increase even further

pin carrier procurement 270/550 received

M. Lefebvre

Procurement of Components

Other Mechanical Components

ambient flanges, cold flanges, bellows assemblies (bellows, cuff rings, seal rings), funnel assemblies, heaters components, rohacell, ambiant flange glands

ALL IN STOCK

Procurement of Components

Electrical Components

Pigtails (7 types, require 750 for one endcap) 1273/1725(ordered) or 74% received

We have all we need for the first endcap

Vacuum cables (2 types, require 750 for one endcap) 1790/1790(ordered) or 100% received

Feedthrough Production

At the University of Victoria as of 03/12/2001 22 feedthrough units produced of which 17 at CERN

vacuum cable installation

M. Lefebvre

Shipment to CERN

crated feedthroughs

first 4 HEC feedthroughs in crate (02/11/01)

Each feedthrough has its own crate

• they come in two sizes

4 feedthrough crates are then crated together for shipment

Reception Tests at CERN

Feedthrough units are tested upon reception at CERN:

- visual inspection
- leak test (ambient temperature)
- electrical test (cross-talk)

The electrical testing equipment will also be used on the cryostat after feedthrough installation

Schedule

Date	Build (total)	Туре	۵	t CERN						
30-nov-2001	C and 1 FCA	L built to date)								
31-dec-2001	2 (24)	(2 STD)		21						
31-jan-2002	4 (28)	(4 STD)		21						
28-feb-2002	3 (31)	(1 HEC, 1 SP	CL, 1 STD)	30 (ECC+)						
31-mar-2002	3 (34)	(2 STD, 1 FCA	AL)	30						
30-apr-2002	3 (37)	(2 HEC, 1 SP	CL)	33						
31-may-2002	3 (40)	(1 HEC, 2 SP	CL)	35						
30-jun-2002	4 (44)	(4 STD)		38						
31-jul-2002	3 (47)	(3 STD)		42						
31-aug-2002	2 (49)	(2 STD)		46						
30-sep-2002	4 (53)	(4 STD)		46						
15-oct-2002	2 (55)	(1 HEC, 1 SP	CL)	50 (ECA)						
15-nov-2002				55						
Oct 00 schedule: ECC delivery to CERN Jul 01 feedthrough installation Sep 01 – Oct 01										
Current Sched ECC de feedthro ECA de feedthro	ule: livery to CE ough installa livery to CE ough installa	11 Feb 02 15 Mar 02 – 30 Apr 02 31 Jul 02 Oct 02 ?								

7 months delay in the first endcap cryostat ECC delivery to CERN

6 months delay in the feedthrough production due to pin carrier procurement problems (now all solved)

negligible impact on project cost: feedthrough installation on ECA at about the same date as planned in Oct 00
used the delay to complete

reception tests on all material
the development of the QA/QC procedure and documents
the testing equipment for CERN

Endcap feedthrough production proceeding very well (40% produced)

Reception tests at CERN performing as planned

The project is not on the critical path

Schedule: reception and installation

Feedthrough reception at CERN started in October 2001

Reception tests fully commissioned

Two persons at CERN for reception tests

- 2.5 months in 2001
- foresee 2 times 1.5 months in 2002

Two persons at CERN for assistance during installation

• foresee 2 times 1.5 months in 2002 (very likely to overlap with one or both reception test periods)

• foresee 2 times 2 months for warm cable installation and final electrical tests

More than half of the barrel feedthroughs (BNL) installed on the barrel cryostat.

Expect an average of about one unit installed per day for the endcap

Quality Assurance / Quality Control

QA/QC is critical to the success of the project

Very detailed document released (QA/QC version 4, Mar 01)

• updated version to be released in Jan 02

• procedures and documents have been updated after the experience gained from building the first feedthroughs

All TIS (CERN Safety) concerns have been addressed (Dec 00)

All information stored in a purpose-built database

- material traceability
- production and reception test results
- available on the web:

http://particle.phys.uvic.ca/~web-atlas/atlas/feedthroughs/status/

Quality Assurance / Quality Control

production status summary

🔆 Netscape													
<u>File E</u> dit <u>V</u> iew <u>G</u> o	file Edit View Go Communicator Help												
🐳 🔌 з 🏠 🧀 📩 📽 🔞 👔 Back Forward Reload Home Search Netscape Print Security Shop Stop													
🔹 😻 Bookmarks 🔬 Location: http://particle.phys.uvic.ca/~web-atlas/atlas/feedthroughs/status/													
📕 📩 most useful 🖆 Athena													
Return to ATLAS Endcap Signal Feedthroughs EndCap Signal FeedThrough Production Status													
ser #	type	started	completed	shipped	reception tests	officially received	installed						
<u>ft00</u>	Standard	6 Jul 00	13 Oct 00	28 Sep 01	23 Oct 01	-	-						
<u>ft01</u>	Standard	27 Sep 00	11 Sep 01	28 Sep 01	25 Oct 01	-	-						
<u>ft02</u>	Standard	11 Oct 00	15 Dec 00	28 Sep 01	27 Oct 01	-	-						
<u>ft03</u>	Standard	27 Mar 01	20 Apr 01	28 Sep 01	29 Oct 01	-	-						
<u>ft04</u>	Standard	25 Apr 01	10 May 01	16 Oct 01	12 Nov 01	-	-						
<u>ft05</u>	Standard	7 May 01	24 May 01	16 Oct 01	8 Nov 01	-	-						
ft06 ☞=0=	Standard Document: D	23 May 01	5 Jun 01	16 Oct 01	8 Nov 01		_ d¤ 🖬 🌿						

Quality Assurance / Quality Control cross talk measurements at UVic and at CERN

Quality Assurance / Quality Control resistance measurements at UVic

Budget and Management Responsibilities

- Design
- Fabrication
 - Signal Pigtails purchased from Orsay
- Commissioning
- Transport
- Reception
 - Electrical and ambient vacuum testing
 - Leak tester provided by ATLAS CERN
- Electrical tests after installation
- Assistance during installation
 - Up to SF50k towards the cost of an orbital welder
 - Assistance during welding on the cryostat
 - Assistance for leak testing during/after installation
 - Manpower to connect warm cables to ambient flange

Budget and Management Budget Status

MIG amount: Current budget: Contingencies: \$4.280M \$4.091M (net of contingencies) \$0.213M

Budget and Management Budget Summary

			Dec 01	MIG COST PROFILE								Dec 01			
PBS	WBS	Description	01-02	97-98	98-99	99-00	00-01	01-02	02-03	03-04	MIG	spent	c o mmit	unco mmit	contingency
			\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	%	%	%	\$CAN
4	1	Endcap Signal Feedthroughs	\$557,615	\$224,375	\$266,888	\$523,358	\$1,233,264	\$1,302,151	\$422,943	\$118,502	\$4,091,482	69	26	5	\$212,829
4.1	2	Project Setup	\$33,604	\$156,386	\$207,997	\$209,536	\$87,019	\$41,418	\$79,657	\$8,149	\$790,163	88	6	6	\$18,183
4.1.1	3	Leak Test Setup	\$10,200	\$102,521	\$29,420	\$6,838	\$39,994	\$16,105	\$18,621	\$4,111	\$217,611	87	0	13	\$6,337
4.1.2	3	Electric Test Setup	\$11,718	\$6,109	\$22,252	\$32,803	\$35,767	\$13,371	\$1,071	\$764	\$112,138	97	0	3	\$872
4.1.3	3	Data Acquisition System	\$5,749	\$15,198	\$5,308	\$4,690	\$5,550	\$6,592	\$2,000	\$816	\$40,154	91	0	9	\$915
4.1.4	3	FT Assembly Tools	\$0	\$0	\$10,135	\$591	\$0	\$0	\$49,811	\$0	\$60,536	18	81	1	\$7,553
4.1.5	3	FT Prototypes	\$0	\$32,558	\$140,275	\$157,847	-\$956	\$0	\$0	\$0	\$329,724	100	0	0	\$0
4.1.6	3	Misc Project Setup Items	\$5,938	\$0	\$607	\$6,768	\$6,663	\$5,350	\$8,154	\$2,458	\$30,000	67	0	33	\$2,506
4.2	2	FT Series Assemblies	\$382,335	\$0	\$0	\$167,287	\$974,803	\$1,019,389	\$118,174	\$15,016	\$2,294,670	66	31	2	\$154,830
4.2.1	3	Mechanical Components	\$289,985	\$0	\$0	\$166,791	\$203,563	\$633,651	\$20,000	\$0	\$1,024,005	64	35	0	\$53,186
4.2.2	3	Electrical Components	\$84,935	\$0	\$0	\$399	\$758,353	\$365,738	\$76,174	\$0	\$1,200,664	70	30	0	\$89,244
4.2.3	3	Shipping Crates	\$7,416	\$0	\$0	\$98	\$12,886	\$20,000	\$22,000	\$15,016	\$70,000	29	0	71	\$12,400
4.3	2	Test Cryostat Signal FT	\$0	\$58,428	\$0	\$0	\$0	\$0	\$0	\$0	\$58,428	100	0	0	\$0
4.4	2	Manpower	\$141,675	\$9,561	\$58,891	\$146,534	\$171,442	\$241,344	\$225,112	\$95,337	\$948,222	56	32	13	\$39,816
4.4.1	3	Salaries and Benefits	\$125,191	\$9,561	\$55,092	\$129,328	\$142,873	\$193,844	\$159,692	\$76,288	\$766,678	60	37	3	\$15,232
4.4.2	3	Consultation and Travel	\$16,484	\$0	\$1,016	\$17,206	\$20,368	\$47,500	\$61,455	\$19,049	\$166,594	33	10	57	\$23,593
4.4.3	3	Other	\$0	\$0	\$2,784	\$0	\$8,201	\$0	\$3,965	\$0	\$14,950	73	0	27	\$991

Contingencies total \$213k and are dominated by exchange rates:

+15% on 1.65 \$CAN/\$US	(pin carriers)
-------------------------	----------------

+25% on 0.230 \$CAN/FF (pigtails)

+15% on 0.980 \$CAN/CHF (orbital welder contribution)

The budget total net of contingencies is \$4.09M

69% of which has been spent (Dec 01)

26% of which has been committed (Dec 01)

Endcap Signal Feedthrough Project including contingencies

Budget and Management Budget Profile

	97-98	98-99	99-00	00-01	01-02	02-03	03-04	Total
Dec 01	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN
Budget	\$224,375	\$266,888	\$523,358	\$1,233,264	\$1,302,151	\$422,943	\$118,502	\$4,091,482
MIG spent (UVic and TRIUMF)	\$224,375	\$266,888	\$523,358	\$1,233,264	\$557,615	\$0	\$0	\$2,805,501
Proposed MIG Profile	\$249,000	\$584,000	\$1,292,880	\$960,000	\$450,000	\$450,000	\$105,602	\$4,091,482

M. Lefebvre

Budget and Management Integrated Budget Profile

97-98 98-99 99-00 00-01 02-03

03-04

	97-98	98-99	99-00	00-01	01-02	02-03	03-04	Total
Dec 01	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN
Budget	\$224,375	\$491,263	\$1,014,621	\$2,247,886	\$3,550,037	\$3,972,980	\$4,091,482	\$4,091,482
MIG spent (UVic and TRIUMF)	\$224,375	\$491,263	\$1,014,621	\$2,247,886	\$2,805,501	\$2,805,501	\$2,805,501	\$2,805,501
Proposed MIG Profile	\$249,000	\$833,000	\$2,125,880	\$3,085,880	\$3,535,880	\$3,985,880	\$4,091,482	\$4,091,482

Budget and Management Series Assemblies Details

						MIG COST	PROFILE							
PBS	WBS	Description	97-98	98-99	99-00	00-01	01-02	02-03	03-04	MIG	spe	nt commi	uncommit	contingency
			\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	%	%	%	\$CAN
4	1	Endcap Signal Feedthroughs	\$224,375	\$266,888	\$523,358	\$1,233,264	\$1,302,151	\$422,943	\$118,502	\$4,091,482	69	26	5	\$212,829
4.1	2	Project Setup	\$156,386	\$207,997	\$209,536	\$87,019	\$41,418	\$79,657	\$8,149	\$790,163	8	6	6	\$18,183
4.2	2	FT Series Assemblies	\$0	\$0	\$167,287	\$974,803	\$1,019,389	\$118,174	\$15,016	\$2,294,670	6	31	2	\$154,830
4.2.1	3	Mechanical Components	\$0	\$0	\$166,791	\$203,563	\$633,651	\$20,000	\$0	\$1,024,005	64	35	0	\$53,186
4.2.1.0	4	Low Inclusion Steel	\$0	\$0	\$61,853	\$2,431	\$0	\$0	\$0	\$64,284	10) 0	0	\$0
4.2.1.1	4	Pin Carriers	\$0	\$0	\$36,827	\$49,719	\$612,797	\$0	\$0	\$699,344	52	48	0	\$50,101
4.2.1.2	4	Warm Flanges	\$0	\$0	\$0	\$20,818	\$0	\$0	\$0	\$20,818	10) 0	0	\$0
4.2.1.3	4	Cold Flanges	\$0	\$0	\$0	\$21,235	\$0	\$0	\$0	\$21,235	10) 0	0	\$0
4.2.1.4	4	Bellow Assemblies	\$0	\$0	\$20,564	\$59,726	\$0	\$0	\$0	\$80,290	10) 0	0	\$0
4.2.1.5	4	Bolt Flanges	\$0	\$0	\$18,370	\$0	\$0	\$0	\$0	\$18,370	10) 0	0	\$0
4.2.1.6	4	Funnel Assemblies	\$0	\$0	\$12,813	\$47,315	\$0	\$0	\$0	\$60,128	10) 0	0	\$0
4.2.1.7	4	Pipe Fittings	\$0	\$0	\$0	\$172	\$0	\$0	\$0	\$172	10) 0	0	\$0
4.2.1.8	4	RF Gaskets and O'Rings	\$0	\$0	\$0	\$2,146	\$854	\$0	\$0	\$3,000	74	0	26	\$199
4.2.1.9	4	Insulation	\$0	\$0	\$4,161	\$0	\$0	\$0	\$0	\$4,161	10) 0	0	\$0
4.2.1.10	4	Welds	\$0	\$0	\$0	\$0	\$20,000	\$20,000	\$0	\$40,000	28	72	0	\$2,887
4.2.1.11	4	CF Flanges	\$0	\$0	\$12,203	\$0	\$0	\$0	\$0	\$12,203	10) 0	0	\$0
4.2.2	3	Electrical Components	\$0	\$0	\$399	\$758,353	\$365,738	\$76,174	\$0	\$1,200,664	70	30	0	\$89,244
4.2.2.1	4	Pig Tail Cables	\$0	\$0	\$192	\$192,216	\$280,000	\$76,174	\$0	\$548,582	3	65	0	\$88,851
4.2.2.2	4	Vacuum Cables	\$0	\$0	\$0	\$471,810	\$39,290	\$0	\$0	\$511,100	10) 0	0	\$0
4.2.2.3	4	Low Voltage Pigtail Cables	\$0	\$0	\$0	\$29,536	\$30,954	\$0	\$0	\$60,491	10) 0	0	\$0
4.2.2.4	4	Low Voltage Vacuum Cables	\$0	\$0	\$0	\$38,056	\$449	\$0	\$0	\$38,505	10) 0	0	\$0
4.2.2.5	4	Heaters	\$0	\$0	\$207	\$6,688	\$3,105	\$0	\$0	\$10,000	84	0	16	\$393
4.2.2.6	4	Extra HEC Pigtails	\$0	\$0	\$0	\$10,821	\$11,940	\$0	\$0	\$22,761	10) 0	0	\$0
4.2.2.7	4	Temperature Probes	\$0	\$0	\$0	\$9,225	\$0	\$0	\$0	\$9,225	10) 0	0	\$0
4.2.3	3	Shipping Crates	\$0	\$0	\$98	\$12,886	\$20,000	\$22,000	\$15,016	\$70,000	29	0	71	\$12,400
4.3	2	Test Cryostat Signal FT	\$58,428	\$0	\$0	\$0	\$0	\$0	\$0	\$58,428	10) 0	0	\$0
4.4	2	Manpower	\$9,561	\$58,891	\$146,534	\$171,442	\$241,344	\$225,112	\$95,337	\$948,222	5	32	13	\$39,816
4.4.1	3	Salaries and Benefits	\$9,561	\$55,092	\$129,328	\$142,873	\$193,844	\$159,692	\$76,288	\$766,678	60	37	3	\$15,232
4.4.2	3	Consultation and Travel	\$0	\$1,016	\$17,206	\$20,368	\$47,500	\$61,455	\$19,049	\$166,594	33	10	57	\$23,593
4.4.3	3	Other	\$0	\$2,784	\$0	\$8,201	\$0	\$3,965	\$0	\$14,950	7:	0	27	\$991

Conclusions

ATLAS Endcap Signal Feedthrough Project

- Crucial component of ATLAS Liquid Argon Calorimetry
- Complex and manpower intensive
 - UVic and TRIUMF personnel
- Production is 40% done
 - 22 units built and tested, 17 units at CERN, 4 in transit (as of 3 Dec 01)
 - Reception tests at CERN have started
 - Proceeding cautiously with emphasis on QA/QC
- Extensive QA/QC programme
- All components (except pin carriers and pigtails) are in hand
- Pin carrier production and delivery not a problem anymore
- Production rate in line with cryostat schedule
 - Installation on ECC is scheduled for late March 2002
- Budget within the allocated MIG
 - Built-in contingencies
 - 95% of baseline costs either spent or committed

M. Lefebvre