ATLAS Endcap Signal Feedthrough Project

Overview

Status

- Pincarrier Procurement
- Feedthrough Production
- QA/QC
- Shipment to CERN
- Reception Tests at CERN
- Schedule
 - Cryostats and Feedthrough Installation
- Budget and Management
- Conclusions

Overview

ATLAS liquid argon calorimetry has over 180k signal channels which must come through the walls of the cryostats

Each feedthrough unit carries 1920 electrical channels.

Barrel: 64 feedthrough units (+spares)

Endcap: 50 feedthrough units total (+5 spares)

The endcap signal feedthrough project is an ATLAS common fund contribution from Canada (CHF 3360k CORE)

Part of the ATLAS Cryostat and Cryogenics Project

Extensively reviewed:

ATLAS reviews

Project Review, BNL, Jun 12-13 1997 Baseline Design review CERN, Oct 13th 1997 Production Readiness Review, CERN, Jan 29th 1999 Activity/Systems Status Overview, CERN, Feb 11-12 2001

NSERC reviews

TRIUMF: Jan 9 2000, Oct 19 2000, Dec 14 2001, Dec 5 2002

Overview

Seal ring OD = 326.4 mm Total height = 699.9 mm

Heater plate (require 25 for one endcap)

Overview

Pigtails (7 types, require 750 for one endcap)

Vacuum cables (2 types, require 750 for one endcap)

Pincarriers (2 types, require 200 for one endcap)

Pincarrier Procurement

pincarriers (/8)

Feedthrough Production

Production at the University of Victoria All 55 feedthrough units produced (last on 25 Oct 2002)

Feedthrough Production

Production at the University of Victoria All 55 feedthrough units produced (last on 25 Oct 2002)

last welds

last dye penetrant tests

last cold test

QA/QC is critical to the success of the project

Very detailed document released (QA/QC version 5, Mar 02)

All TIS (CERN Safety) concerns have been addressed (Dec 00)

All information stored in a purpose-built database

- material traceability
- production and reception test results
- available on the web:

http://particle.phys.uvic.ca/~web-atlas/atlas/feedthroughs/status/

production status summary

ack Forward	3 A Reload Home	🤌 📩 📬 Search Netscape Pri	🖡 💰 🙆 nt Security Sho	p Stop				
👔 Bookmarks 🥠 Location: http://particle.phys.uvic.ca/~web-atlas/atlas/feedthroughs/status/								
most userur	Anona							
		Retu	rn to ATLAS Ende	ap Signal Feedthro	ughs			
	EndC	ap Signal	FeedThr	ough Pr	oduction S	Status		
ser #	type	started	completed	shipped	reception tests	officially received	installed position	
<u>ft00</u>	Standard	6 Jul 00	13 Oct 00	28 Sep 01	23 Oct 01	15 Mar 02	-	
<u>ft01</u>	Standard	27 Sep 00	11 Sep 01	28 Sep 01	25 Oct 01	15 Mar 02	-	
<u>ft02</u>	Standard	11 Oct 00	15 Dec 00	28 Sep 01	27 Oct 01	15 Mar 02	-	
<u>ft03</u>	Standard	27 Mar 01	20 Apr 01	28 Sep 01	29 Oct 01	15 Mar 02	-	
<u>ft04</u>	Standard	25 Apr 01	10 May 01	16 Oct 01	12 Nov 01	15 Mar 02	-	
<u>ft05</u>	Standard	7 May 01	24 May 01	16 Oct 01	8 Nov 01	15 Mar 02	-	
<u>ft06</u>	Standard	23 May 01	5 Jun 01	16 Oct 01	8 Nov 01	15 Mar 02	-	
<u>ft07</u>	Standard	25 May 01	14 Jun 01	16 Oct 01	12 Nov 01	15 Mar 02	-	
<u>ft08</u>	Standard	30 May 01	11 Jun 01	16 Oct 01	15 Nov 01	15 Mar 02	-	
<u>ft09</u>	HEC	26 Jun 01	25 Jul 01	2 Nov 01	29 Nov 01	15 Mar 02	-	
<u>ft10</u>	Special	29 Jun 01	19 Jul 01	16 Oct 01	12 Mar 02	18 Mar 02	-	
<u>ft11</u>	HEC	12 Jul 01	1 Aug 01	2 Nov 01	4 Dec 01	18 Mar 02	-	
614	a	10 7 1 01	12 / 01	100.01	1234 00	10.34 00		
F	Document: Done		- Constant	Landard				

cross talk measurements at UVic and at CERN

resistance measurements at UVic

Shipment to CERN

crated feedthroughs

last produced feedthrough in crate (Oct 2002)

Each feedthrough has its own crate 4 feedthrough crates are then crated together for shipment 50 feedthrough units now at CERN

Reception Tests at CERN

Feedthrough units are tested upon reception at CERN:

- visual inspection
- leak test (ambient temperature)
- electrical test (cross-talk)

The electrical testing equipment will also be used on the cryostat after feedthrough installation

46 units tested at CERN, the rest to be tested soon

ATLAS NSERC Review, December 5th 2002

Schedule: Endcap Cryostats

ECC arrived at CERN 20 March 2002

Cold test of ECC revealed problems with the inter-vessel stoppers; the heaters need replacing.

Repairs started October 2002

Ready for feedthrough installation beginning of Dec 2002

ECA expected at CERN in April 2003 (very preliminary)

Ready for feedthrough installation at least one month later eception at CERN on 20 Mar 2002

otation for cold test on 18 Apr 2002

Schedule: Installation

Two persons at CERN for assistance during installation

- foresee 1.5 months for installation on ECC
- foresee 1.5 months installation on ECA
- about 1.5 months for warm cable installation and final electrical tests

Special testing equipment has been developed for the warm cable insertion

- bent pin indicator (to give early warning of bent pins while installing a warm cable)
- a short-to-ground indicator
- a cross-channel-short indicator (to check for cross-channel shorts in the warm cable after installation)

• a pigtail ATI / baseplane interface for use during the post-installation cross talk tests (BNL was using a warm cable for their TDR test interface, which caused problems since the warm cables are not designed to stand up to many plugins)

Schedule Summary

Last feedthrough produced at UVic on Oct 25 2002

at the Dec 01 review we predicted 15 Oct 2002 !!

limiting factor was pigtail reception radiation tests on last pigtails: awaiting results mid Dec 02

Oct 00 Schedule:

ECC delivery to CERN	Jul 01
feedthrough installation	Sep 01 – Oct 01

Dec 01 Schedule:

11 Feb 02
15 Mar 02 – 30 Apr 02
31 Jul 02
Oct 02 ?

Current Schedule:

ECC delivery to CERN feedthrough installation ECA delivery to CERN feedthrough installation 20 Mar 02 Dec 02 – Feb 03 17 Apr 03 ? late May 03 ?

Budget and Management Responsibilities

- Design
- Fabrication
 - Signal Pigtails purchased from Orsay
- Commissioning
- Transport
- Reception
 - Electrical and ambient vacuum testing
 - Leak tester provided by ATLAS CERN
- Electrical tests after installation
- Assistance during installation
 - Assistance during welding on the cryostat
 - Manpower to connect warm cables to ambient flange

Budget and Management Budget Status

Allocated MIG amount:\$4.280MCurrent budget:\$3.998M (net of contingencies)Contingencies:\$0.068M

	(Dec01)
ncies)	(\$4.091)
	(\$0.213)

Budget and Management Budget Summary

			Sep 02			MIG	COST PROP	1LE				Sep 02			
PBS	WBS	Description	02-03	97-98	98-99	99-00	00-01	01-02	02-03	03-04	MIG	spent	c o mmit	uncommit	contingency
			\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	%	%	%	\$CAN
4	1	Endcap Signal Feedthroughs	\$366,616	\$224,375	\$266,888	\$523,373	\$1,233,264	\$981,045	\$498,227	\$271,298	\$3,998,471	90	7	3	\$68,459
4.1	2	Project Setup	\$4,471	\$156,386	\$207,997	\$209,536	\$87,019	\$38,763	\$10,745	\$11,174	\$721,620	98	0	2	\$4,112
4.1.1	3	Leak Test Setup	\$1,382	\$102,521	\$29,420	\$6,838	\$39,994	\$13,692	\$5,150	\$3,547	\$201,163	96	0	4	\$1,579
4.1.2	3	Electric Test Setup	\$328	\$6,109	\$22,252	\$32,803	\$35,767	\$12,562	\$1,307	\$2,029	\$112,830	97	0	3	\$752
4.1.3	3	Data Acquisition System	\$1,241	\$15,198	\$5,308	\$4,690	\$5,550	\$5,771	\$1,500	\$1,146	\$39,164	96	0	4	\$351
4.1.4	3	FT Assembly Tools	\$0	\$0	\$10,135	\$591	\$0	\$0	\$0	\$0	\$10,725	100	0	0	\$0
4.1.5	3	FT Prototypes	\$0	\$32,558	\$140,275	\$157,847	-\$956	\$0	\$0	\$0	\$329,724	100	0	0	\$0
4.1.6	3	Misc Project Setup Items	\$1,520	\$0	\$607	\$6,768	\$6,663	\$6,737	\$2,788	\$4,451	\$28,014	80	0	20	\$1,430
4.2	2	FT Series Assemblies	\$249,044	\$0	\$0	\$167,302	\$974,803	\$712,338	\$285,585	\$123,526	\$2,263,554	93	6	1	\$36,880
4.2.1	3	Mechanical Components	\$5,666	\$0	\$0	\$166,791	\$203,563	\$611,856	\$32,579	\$1,024	\$1,015,813	97	3	0	\$3,848
4.2.2	3	Electrical Components	\$239,146	\$0	\$0	\$414	\$758,353	\$86,050	\$239,646	\$118,778	\$1,203,241	90	10	0	\$29,820
4.2.3	3	Shipping Crates	\$4,232	\$0	\$0	\$98	\$12,886	\$14,432	\$13,360	\$3,724	\$44,500	71	0	29	\$3,213
4.3	2	Test Cryostat Signal FT	\$0	\$58,428	\$0	\$0	\$0	\$0	\$0	\$0	\$58,428	100	0	0	\$0
4.4	2	Manpower	\$113,101	\$9,561	\$58,891	\$146,534	\$171,442	\$229,944	\$201,897	\$136,598	\$954,869	76	15	8	\$27,467
4.4.1	3	Salaries and Benefits	\$85,912	\$9,561	\$55,092	\$129,328	\$142,873	\$189,244	\$135,704	\$94,617	\$756,420	81	19	0	\$7,220
4.4.2	3	Consultation and Travel	\$27,189	\$0	\$1,016	\$17,206	\$20,368	\$40,582	\$66,193	\$41,981	\$187,345	57	0	43	\$20,246
4.4.3	3	Other	\$0	\$0	\$2,784	\$0	\$8,201	\$119	\$0	\$0	\$11,104	100	0	0	\$0

Contingencies total \$68.5k and are dominated by:

• exchange rate: +25% on 0.244 \$CAN/FF or 1.60 \$CAN/Euro (pigtails)

contingency on travel for installation

The budget total net of contingencies is \$3.998M

90% of which has been spent (Sep 02)

7% of which has been committed (Sep 02)

Budget and Management Budget Profile

Budget and Management Budget Profile

	97-98	98-99	99-00	00-01	01-02	02-03	03-04	Total
Sep 02	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN
Budget	\$224,375	\$266,888	\$523,373	\$1,233,264	\$981,045	\$498,227	\$271,298	\$3,998,471
MIG spent (UVic and TRIUMF)	\$224,375	\$266,888	\$523,373	\$1,233,264	\$981,045	\$366,616	\$0	\$3,595,562
Proposed MIG Profile	\$249,000	\$584,000	\$1,292,880	\$960,000	\$450,000	\$200,000	\$262,591	\$3,998,471

Budget and Management Integrated Budget Profile

	97-98	98-99	99-00	00-01	01-02	02-03	03-04	Total
Sep 02	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN
Budget	\$224,375	\$491,263	\$1,014,636	\$2,247,901	\$3,228,945	\$3,727,173	\$3,998,471	\$3,998,471
MIG spent (UVic and TRIUMF)	\$224,375	\$491,263	\$1,014,636	\$2,247,901	\$3,228,945	\$3,595,562	\$3,595,562	\$3,595,562
Proposed MIG Profile	\$249,000	\$833,000	\$2,125,880	\$3,085,880	\$3,535,880	\$3,735,880	\$3,998,471	\$3,998,471

Budget and Management Series Assemblies Details

			MIG COST PROFILE											
PBS	WBS	Description	97-98	98-99	99-00	00-01	01-02	02-03	03-04	MIG	spent	c o mmit	unc o mmit	contingency
			\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	\$CAN	%	%	%	\$CAN
4	1	Endcap Signal Feedthroughs	\$224,375	\$266,888	\$523,373	\$1,233,264	\$981,045	\$498,227	\$271,298	\$3,998,471	90	7	3	\$68,459
4.1	2	Project Setup	\$156,386	\$207,997	\$209,536	\$87,019	\$38,763	\$10,745	\$11,174	\$721,620	98	0	2	\$4,112
4.2	2	FT Series Assemblies	\$0	\$0	\$167,302	\$974,803	\$712,338	\$285,585	\$123,526	\$2,263,554	93	6	1	\$36,880
4.2.1	3	Mechanical Components	\$0	\$0	\$166,791	\$203,563	\$611,856	\$32,579	\$1,024	\$1,015,813	97	3	0	\$3,848
4.2.1.0	4	Low Inclusion Steel	\$0	\$0	\$61,853	\$2,431	\$0	\$21,079	\$0	\$85,363	75	25	0	\$3,162
4.2.1.1	4	Pin Carriers	\$0	\$0	\$36,827	\$49,719	\$593,509	\$0	\$0	\$680,055	100	0	0	\$0
4.2.1.2	4	Warm Flanges	\$0	\$0	\$0	\$20,818	\$0	\$0	\$0	\$20,818	100	0	0	\$0
4.2.1.3	4	Cold Flanges	\$0	\$0	\$0	\$21,235	\$0	\$0	\$0	\$21,235	100	0	0	\$0
4.2.1.4	4	Bellow Assemblies	\$0	\$0	\$20,564	\$59,726	\$0	\$0	\$0	\$80,290	100	0	0	\$0
4.2.1.5	4	Bolt Flanges	\$0	\$0	\$18,370	\$0	\$0	\$0	\$0	\$18,370	100	0	0	\$0
4.2.1.6	4	Funnel Assemblies	\$0	\$0	\$12,813	\$47,315	\$0	\$0	\$0	\$60,128	100	0	0	\$0
4.2.1.7	4	Pipe Fittings	\$0	\$0	\$0	\$172	\$0	\$0	\$0	\$172	100	0	0	\$0
4.2.1.8	4	RF Gaskets and O'Rings	\$0	\$0	\$0	\$2,146	\$871	\$0	\$0	\$3,017	100	0	0	\$0
4.2.1.9	4	Insulation	\$0	\$0	\$4,161	\$0	\$0	\$0	\$0	\$4,161	100	0	0	\$0
4.2.1.10	4	Welds	\$0	\$0	\$0	\$0	\$17,477	\$11,500	\$1,023	\$30,000	77	23	0	\$686
4.2.1.11	4	CF Flanges	\$0	\$0	\$12,203	\$0	\$0	\$0	\$0	\$12,203	100	0	0	\$0
4.2.2	3	Electrical Components	\$0	\$0	\$414	\$758,353	\$86,050	\$239,646	\$118,778	\$1,203,241	90	10	0	\$29,820
4.2.2.1	4	Pig Tail Cables	\$0	\$0	\$192	\$192,216	\$1,413	\$238,210	\$118,778	\$550,809	78	22	0	\$29,695
4.2.2.2	4	Vacuum Cables	\$0	\$0	\$15	\$471,810	\$39,290	\$0	\$0	\$511,115	100	0	0	\$0
4.2.2.3	4	Low Voltage Pigtail Cables	\$0	\$0	\$0	\$29,536	\$30,954	\$0	\$0	\$60,491	100	0	0	\$0
4.2.2.4	4	Low Voltage Vacuum Cables	\$0	\$0	\$0	\$38,056	\$449	\$0	\$0	\$38,505	100	0	0	\$0
4.2.2.5	4	Heaters	\$0	\$0	\$207	\$6,688	\$2,004	\$500	\$0	\$9,399	95	0	5	\$125
4.2.2.6	4	Extra HEC Pigtails	\$0	\$0	\$0	\$10,821	\$11,940	\$0	\$0	\$22,761	100	0	0	\$0
4.2.2.7	4	Temperature Probes	\$0	\$0	\$0	\$9,225	\$0	\$936	\$0	\$10,161	100	0	0	\$0
4.2.3	3	Shipping Crates	\$0	\$0	\$98	\$12,886	\$14,432	\$13,360	\$3,724	\$44,500	71	0	29	\$3,213
4.3	2	Test Cryostat Signal FT	\$58,428	\$0	\$0	\$0	\$0	\$0	\$0	\$58,428	100	0	0	\$0
4.4	2	Manpower	\$9,561	\$58,891	\$146,534	\$171,442	\$229,944	\$201,897	\$136,598	\$954,869	76	15	8	\$27,467
4.4.1	3	Salaries and Benefits	\$9,561	\$55,092	\$129,328	\$142,873	\$189,244	\$135,704	\$94,617	\$756,420	81	19	0	\$7,220
4.4.2	3	Consultation and Travel	\$0	\$1,016	\$17,206	\$20,368	\$40,582	\$66,193	\$41,981	\$187,345	57	0	43	\$20,246
4.4.3	3	Other	\$0	\$2,784	\$0	\$8,201	\$119	\$0	\$0	\$11,104	100	0	0	\$0

ATLAS NSERC Review, December 5th 2002

Budget and Management FY03-04 Salary and Travel Details

Salaries

Paul Poffenberger (1/2 of FY03-04 requested in MFA) Fiona Holness (contract until end of 2003)

Travel to CERN for installation FY03-04:

2 times 1.5 months for Poffenberger

2 times 1.5 months for Holness

2 weeks for Birney

We benefit from R. Langstaff, R. McPherson and S. Chekulaev's presence at CERN

Training of HQP

Aaron Dowling	(Aug 98 – Oct 02)
Alisa Dowling	(Now TRIUMF Engineer)
M. Fincke-Keeler	(RA)
F. Holness	(Lab technologist)
J. Lindner	(Coop Student)
R. MacDonald	(Coop Student)
R. McDonald	(Coop Student)
E. Muzzerall	(Coop Student)
P. Poffenberger	(RA)
G. Vowles	(Aug 98 – Jan 02, now at UofT)
W. Wiggins	(Coop Student, CUPC2002 presentation)

Conclusions

ATLAS Endcap Signal Feedthrough Project

- Crucial component of ATLAS Liquid Argon Calorimetry
- Complex and manpower intensive
 - UVic and TRIUMF personnel
 - Training of HQP
- Production at UVic finalized on 25 Oct 2002
 - 50/55 units at CERN
 - Extensive QA/QC programme
- Starting installation
 - Difficult operations that require great care
 - Our expertise is necessary
- Budget under the allocated MIG (\$4.28M)
 - Management of personnel resources and related field travel
 - \$3.998M + \$0.068M contingencies
 - 97% of baseline costs either spent or committed