Strategies for early physics with ATLAS at the LHC

NSERC ATLAS Review 15-16 December 2006

Michel Lefebvre University of Victoria

Getting ready for first LHC collisions

ATLAS has very ambitious performance goals

- driven by physics requirements
- needs time and effort to control the detector at required level
- final understanding of detector only achievable with LHC collisions
- Pressure to extract results as soon as possible
 - competition with other experiments
 - feedback signs of new physics to HEP community for planning
- Exploit time available before collisions to understand the detector enough to take advantage of the very first data
 - beam tests
 - detector and computing commissioning
 - preparation of calibration and analysis strategies

Initial conditions

- Assume the ATLAS detector installed
- Assume good knowledge of the detector
 - many years of simulation and (combined) beam test studies
 - commissioning at low and high rates
 - electronics pulser systems
 - cosmic rays: detector timing and alignment
 - first injections (beam gas collisions / beam halo muons): more specialized alignment work
- Expected detector performance at first collisions

 EM calorimeter response uniformity 	~1%
 Hadronic calorimeter response uniformity 	2 to 3%
 γ/e/μ energy scale 	0.5 to 2%
 Jet energy scale 	<10%
 Tracker alignment (in Rφ plane) 	20 to 200 μm

LHC luminosity profile and physics reach

M. Lefebvre

LHC PP Cross Section

 Assume total pp cross section known to ~1% from the TOTEM experiment

Typical cross sections:

Process	σ
$W \to e\nu$	15 nb
$Z \rightarrow ee$	1.5 nb
$\overline{t}t$	800 pb
$\overline{b}b$	500 µb
$\widetilde{q}\widetilde{q}$ (m $_{\widetilde{q}}=$ 1 TeV)	1 pb
Higgs (m $_H$ =0.8 TeV)	1 pb

Strategy for first interactions

First use of in-situ calibration (see Rob McPherson's talk)

 understand and calibrate detector and trigger in-situ using well known physics samples

Understand basic SM physics at 14 TeV

- first checks of Monte Carlo simulations
- first look at minimum bias events, jet distributions, parton density functions constraints; W, Z, top cross sections; top mass
- understand detector signatures

The road to discovery

- understand SM backgrounds to searches
 - in particular missing E_{T} distribution
- focus on robust signatures that could reveal new physics without a complete knowledge of the detector response
 - for example, hunt for mass bumps where more than one sub-detector contribute to the signal

Analyses in Canada for early physics

Topic	Institute
QCD di-jets	Victoria
SM top physics	Carleton
Hadronic top pair decays	Victoria
Anomalous top production	Victoria
Inclusive SUSY; fake / instrumental $\not\!\!\!E_T$	TRIUMF, Victoria, Toronto
SUSY end-point search	Carleton
Higgs in SUSY decays	Victoria
Two-electron finder for Drell-Yan, Z'	Victoria
Z' or strong interaction resonance in τ channel	$\operatorname{Montréal}$, Toronto, TRIUMF
Black holes	Alberta, TRIUMF
ADD extra dimensions	Toronto
Randall-Sundrum graviton search	Regina, Toronto
Trigger-aware charged Higgs	McGill
Lepton identification and fake rate studies	Toronto

This list is increasing steadily: new students, research associates, etc.

QCD event shapes and underlying event	Victoria
τ /jet separation and fake rate studies	Regina
W' and Z' studies	Regina

Trigger-aware analyses

- Triggering on interesting events is one of the greatest challenges at a hadron collider
 - All Computer System Commissioning (CSC) studies must be trigger-aware
- Canadian goups lead the efforts to characterize the trigger performance, in particular jet reconstruction

M. Lefebvre

Trigger menus for jets

For performance studies

- j20 ; j20kt ; 2j20 ; 3j20; 4j20
- the 1,2,3,4 thresholds can be tunes simultaneously
- compare k_T and cone jet algorithms when analysing AOD/ESD

Low luminosity

- J160 ; 2J120 ; 3J65 ; 4J50
- these signatures are available for trigger aware analyses

tau/jet separation studies

samples used

- Z $\rightarrow \tau \tau$ and W $\rightarrow \tau \nu$
- di-jet samples 1 prong τ akerate % 0.9 0.8 0.7 0.6 3 prong τ 0.5 0.4 0.3 0.2 65 45 50 55 60 40 efficiency % 0.6 0.4 Athena 12.0.31 0.2 0 ^l 26 46 28 30 32 36 38 40 42 44 48 34 efficiency %

M. Lefebvre

Electron ID and fake rate studies

Electron identification using likelihood

- distribution of some likelihood variables and the likelihood estimator
- $0 < |\eta| < 1.3$

Electron ID and fake rate studies

Likelihood efficiency studies

• $1.3 < |\eta| < 1.6$

M. Lefebvre

Missing E_{T} studies

- Missing E_T is expected to be a key signature for most theories beyond the SM, such as SUSY or extra dimensions
 - in SUSY, Missing E_T is associated to a (new) weakly interacting particle, such at the lightest SUSY particle (LSP)
 - Thorough understanding of missing E_T measurement essential to many studies, in particular missing E_T tails
- SM source of missing E_{T} must be studied carefully
 - processes involving neutrinos

Instrumental source of missing E_{T} can have many causes

- known holes in the detector acceptance
- unknown or poorly known material distributions
- energy miscalibration
- electronics problems

Missing E_T fake rate studies

Tools have been developed to study instrumental fake missing E_T.

- simulated data produced with a number of calorimeter channels turned off or at reduced voltage
 - control crates, high-voltage lines, readout lines
- compare simulated data with and without degraded calorimeter
 - for processes with and without genuine missing $E_{\rm T}$
- learn how to detect such problems
- understand the effect on the missing E_{T} distribution (tails)
- Learn how to correct the calorimeter (and jet) energy

Use corrections in inclusive searches for missing E_T signal beyond the SM

for example SUSY, extra dimensions

Minimum-bias events

One of the very first measurements

- Modelling of pileup event crucial for high p_T studies
- extrapolating from Tevatron to LHC
- in principle, only requires a few days of data
- energy dependence of dN/dη ?

10

M. Lefebvre

Underlying event

Also one of the very first measurements

• Modelling of underlying event crucial for high p_T studies

Look at tracks in the region transverse to jet activity

QCD event shapes

Event shape variables under investigation

- special event shape variables for pp collision
- for example: thrust

$$T_{\perp,g} = \max_{\vec{n_{\perp}}} \frac{\sum_{i} |\vec{p_{\perp,i}} \cdot \vec{n_{\perp}}|}{\sum_{i} |\vec{p_{\perp,i}}|}$$

Thrust found sensitive to underlying event MC tune

 potentially, an independent method to tune the MC

Top Quark Production

M. Lefebvre

Top mass

Reconstructed top mass, without b-tagging, with 150 pb⁻¹

- aim at extremely simple and robust selection criteria
- one isolated e or μ with $p_T > 20 \text{ GeV}$
- missing E_T > 20 GeV
- exactly 4 jets
 - $\Delta R = 0.4$
 - $|\eta| < 2.5$
 - p_T > 40 GeV
- cut efficiency ~ 4.5%
- top mass obtained from the three jets with the max p_T sum
- systematics limited
 - in 175 GeV
 - out 167 +/- 0.8 GeV

Top mass from the fully hadronic channel

- Try to reconstruct the top mass from ttbar events in the fully hadronic channel (6 jets)
 - NLO: 369 pb
- Attempt without b-jet tagging
 - uses only calorimeter information
 - developing selection criteria
 - kinematic fit on 6 jets
- Background samples have been generated
 - QCD mlutijet
 - W + jets

M. Lefebvre

- non fully hadronic ttbar
- Preliminary results show that this is difficult to achieve
 - may need to use at least one b-tag
 - may also need to extend analysis using 5 jets

SUSY searches: effective mass

- Emphasis on *R*-parity conserving mSUGRA model
- Plan to perform both inclusive and exclusive searches
 - SM backgrounds include W/Z + jets, QCD multijets, ttbar and single top
- Inclusive searche example: effective mass
 - study of $M_{\text{eff}} = E_{\text{T}}^{\text{miss}} + P_{\text{T}1} + P_{\text{T}2} + P_{\text{T}3} + P_{\text{T}4}$

SUSY searches: dilepton endpoint

Exclusive search example: dilepton endpoint

search for the next to lightest SUSY particle (NLSP)

• decay mode
$$\tilde{\chi}_2^0 \rightarrow \tilde{\ell}^{\pm} \ \ell^{\mp} \rightarrow \tilde{\chi}_1^0 \ \ell^+ \ \ell^-$$

• look at M_{\parallel} : sharp edge (endpoint) expected

SUSY searches: anomalous top production

- Physics BSM, such as SUSY, can lead to anomalous (non-SM) top quark production
 - can have different kinematic distributions then SM ttbar or single top
- Inclusive search for top quark production, non assuming SM kinematics, is under way
 - attempting to use hadronic top decays and constrained kinematic fit
 - W and top mass constraints
 - dominant background seems to be SM ttbar where one top decays semi-leptonically
- In some SUSY models anomalous top production can be a potential discovery channel below 1 fb⁻¹.
- Early'ish physics

Z' and W' studies

- Many theories predict new gauge bosons
 - backgrounds: ttbar, dijet, W+jets, Z+jets, dibosons, Drell-Yan
- Analyses involve muon and electron performance at very high p_T (> 1TeV)... "earlyish" physics.
- Example: Z' → ee ■●■
 - here normalized for 10 fb⁻¹

M. Lefebvre

Strategies for early physics, NSERC ATLAS Review, 15-16 Dec 2006

Z->ee

Comments and Conclusions

We are aggressively getting ready for first collisions

- take advantage of our ATLAS detector expertise
- ATLAS Canada computing in fast progress (see M. Vetterli's talk)
- we need to increase our presence at CERN
- Canadian involvement in early physics analyses
 - broad range of interests
 - trigger
 - jets, leptons, missing E_{T} signatures
 - SM processes
 - first search for evidence of BSM physics
 - integrated in ATLAS working groups
 - strong involvement in CSC notes preparation
 - frequent regional Canadian meetings

Extra slides

$\label{eq:total} \begin{array}{l} \mbox{Total proton-proton Cross Section} \\ \mbox{total} \\ \begin{array}{l} \mbox{elastic } pp \rightarrow pp \\ \mbox{inelastic...} \\ \begin{array}{l} \mbox{diffractive.....} \\ \mbox{diffractive.....} \\ \mbox{double diffractive } pp \rightarrow pX \\ \mbox{double diffractive } pp \rightarrow ppX \\ \mbox{non-diffractive } pp \rightarrow X \end{array} \end{array}$

$$\sigma_{\rm tot} = \sigma_{\rm elas} + \sigma_{\rm s.dif} + \sigma_{\rm d.dif} + \sigma_{\rm n.dif}$$

Elastic: both hadrons are not broken up to form new hadrons. Diffractive: one (or both) hadron gets excited to a more massive state with the same quantum numbers which subsequently decays, as in $p \rightarrow N^* \rightarrow p\pi$.

A double pomeron exchange event is equivalent to a central diffractive event, a special type of double diffractive event.

Total Cross Section

The total cross section for pp and pp scattering

TOTAL CROSS SECTION AND LUMINOSITY. By G. Matthiae (Rome U., Tor Vergata & INFN, Rome). 2002. 16pp. Prepared for 3rd International Symposium on LHC Physics and Detectors (LHC 2001), Chia, Sardinia, Italy, 25-27 Oct 2001. Published in **Eur.Phys.J.direct C4S1:13,2002**

M. Lefebvre

Top mass

Top mass and the underlying event

different underlying event models can shift the top mass by up to 5 GeV

M. Lefebvre