

LAr Software Status and Plans

ATLAS Canada Review 4-5 November 2003

> Michel Lefebvre Victoria

Developed for MC simulation

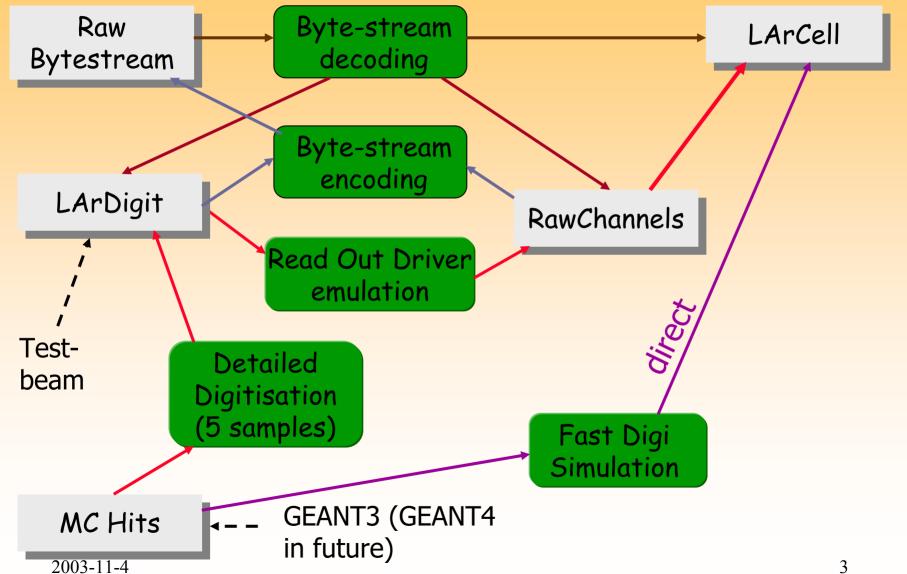
- Often developed/used/tested only with fast MC (ATLFAST)
- Even with full MC, extreme simplifications built in at a low level
 - Complete inability to handle cell-by-cell calibrations

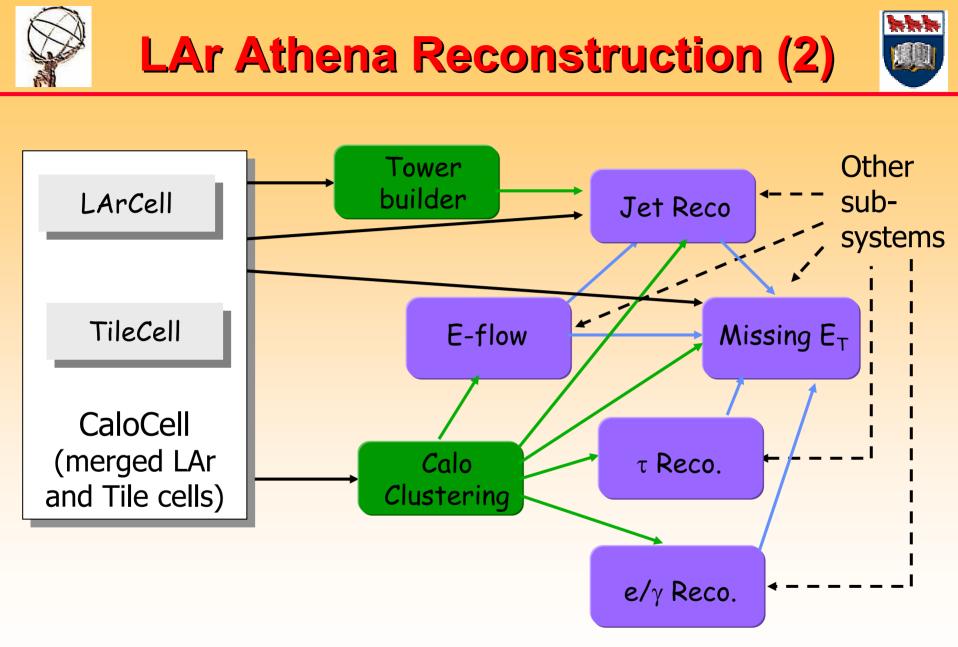
* "ATHENA" Reconstruction algorithms available for

- Detailed simulation of LAr detector response from GEANT hits
- Cluster finding and their properties (e.g. shower shapes)
- Calibration of e.m. cluster, jets, missing E_T
- Collaborating closely together with Tile group

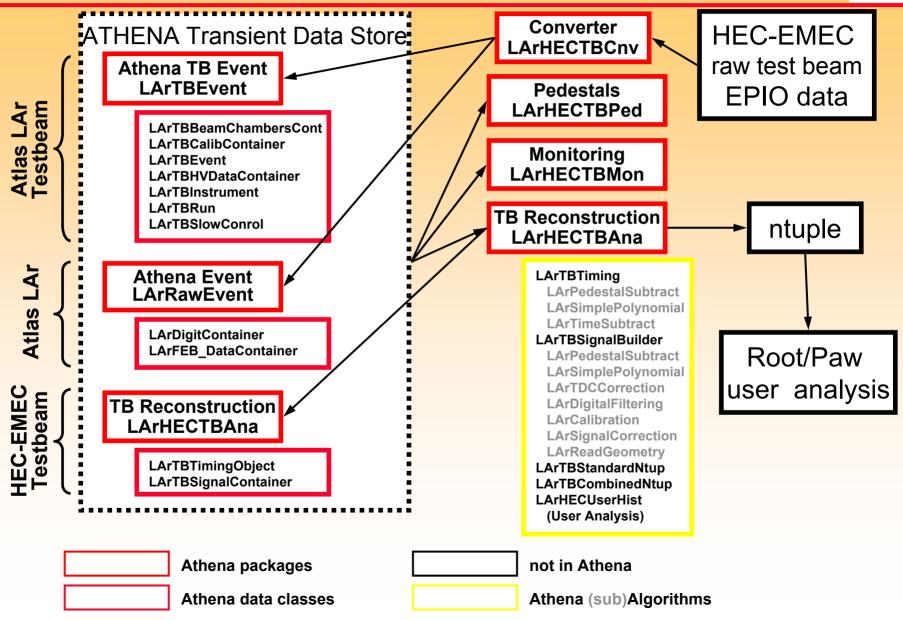
 Strong contributions within combined performance groups

e, γ, τ, jet, E_Tmiss reconstruction and identification


Major contributions for trigger community


Simulation of data formats as seen by the trigger

LAr Athena Reconstruction (1)



- First applications of ATHENA to real data:
 - 2002 EMEC+HEC and 2003 FCAL beam test data
 - Pioneered by Victoria: Kanaya et al.
 - Several rude shocks to the offline community:
 - Different calibrations per channel
 - ♦ Pedestals, pulse shapes, gain, ...
 - Calibrations change with time
 - Want to compare different types of reconstruction, clustering, ...
 - ♦ Non-Gaussian, variable noise, ...
 - Pragmatic solution for the older testbeams:
 - Use minimal offline existing class structure, write rest of code in testbeam specific packages

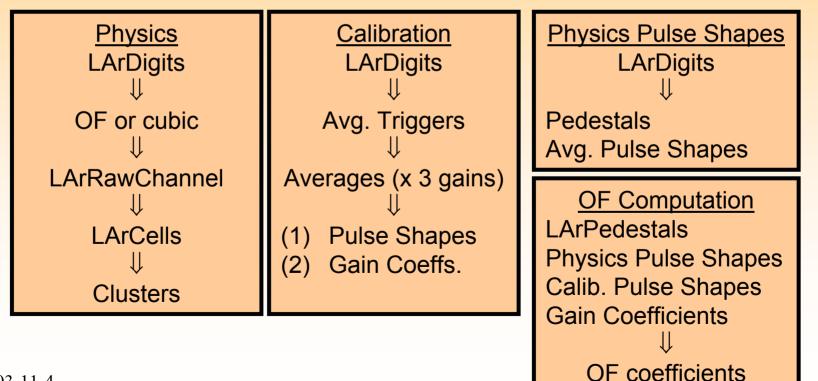
HEC-EMEC Test Beam Software schematic view (May 2003)

Compromises w.r.t. "ideal ATHENA" for previous LAr Testbeams

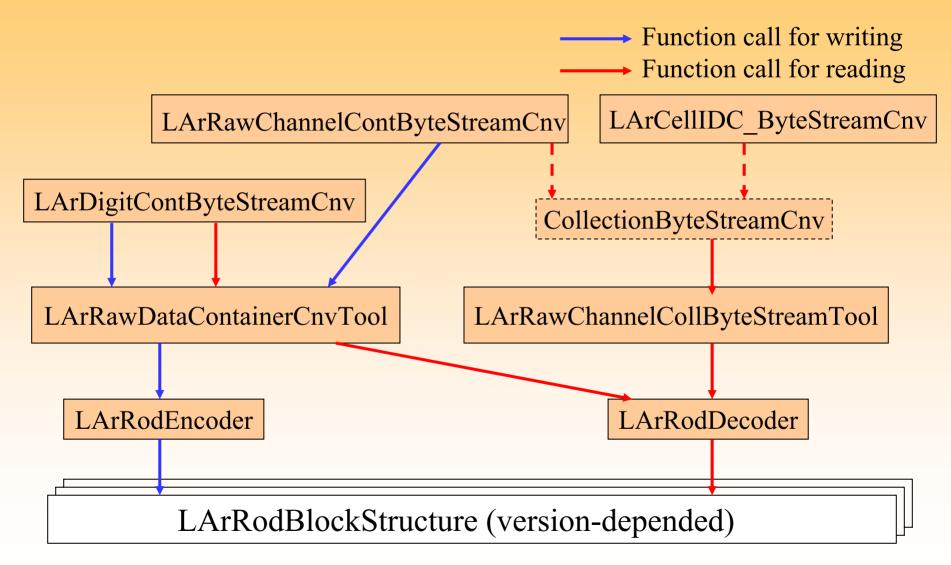
- DAQ systems not TDAQ
 - No standard eformat/ByteStream data
 - Needed custom event readers (EventSelector/EventIterator)
- Identifiers / Geometry services incomplete
 - Custom TB classes introduced for analysis (hack ...)
 - Even for ATLAS, need some way of handling mis-alignments, swapped channels, etc.
- Insufficient Database support in ATHENA
 - Heavy use of input ASCII files for geometries, calibration constants, etc., hidden in new custom TB classes
- Testbeam specific information introduced
 - In principle, only "asynchronous trigger" is different
- General inability of ATHENA to handle timevarying data from imperfect detectors

Current LAr software development

Large rewrite of LAr offline software, driven by 2004 combined beam tests (Beam test software coordinator: McPherson)


- 1) New "Bytestream converters" to read data from LAr RODs and ATLAS DAQ
- 2) Offline packages to emulate ROD usecases
 - Eg: analyze FADC data for testbeam and ATLAS commissioning stages, normally "crunched" in RODs
- 3) Cell identifier and geometry mapping
 - Read from databases
 - Handle "nearest neighbours" etc. for clustering (was impossible)
 - Cell properties (volumes, ...) needed for energy weighting
- 4) Calibration databases with "run/event" validity
 - > Used both online and offline
- 5) Rewrite of detector monitoring for compatibility with other systems

Close collaboration with Event Filter team (C. Padilla, CERN; M. Bosman, Barcelona)



- Read FADC time samples (Digits) from front end boards
- Perform pulse reconstruction (optimal filter, cubic, ...)
 - Produce Energy and Time (RawChannel)
- ROD \rightarrow Bytestream \rightarrow DAQ \rightarrow Persistency (file) \rightarrow ATHENA
- ♦ Raw time samples also sometimes sent → Bytestream
 - Testbeam, ATLAS commissioning, subset of pulses ATLAS running
- RODs must also handle shape/gain calibration runs

OFFLINE

- 32-bit integer
- Give detector cell position
- Access via "helpers"
 - LArEM_ID (HEC, FCAL)
 - ieta, iphi, sampling, ...
 - Nearest neighbour lists

Helpers built from (XML) dictionary

 Hash tables built for fast access

2002 EMEC+HEC and FCAL TB

- Used private TB index
- Made dummy (valid) offline ID
- LArCabling → dummy online ID
- Breaks: hashing, neighbours, ...

٠

ONLINE

32-bit integer Hardware identifier

 Feedthrough, slot, channel, ...

(unconnected channels annoying ...)

2004 combined TB and ATLAS

- XML dictionary for geometries
- Needs detector input for LArCabling
- Developing database

Current LArTB in ATHENA

- Reads from ASCII files (private indexing schemes) for geometry information
- Private analysis routines, would not work transparently with, eg, offline clustering routines

Cell Geometry being developed based on testbeam experience

- Online + Offline Identifiers
- Cell position (x/y/z , η/φ/depth)
- Cell volume
 - Essential for cell weighting techniques
- Both IDEAL and TRANSFORMED coordinates
 - Implemented in database

Geometry subdetector implementation:

- EMEC+HEC: Lefebvre
- FCAL: Loch
- EMB: McPherson (+ Boonekamp)

Databases (both offline and online)

- 1) Configuration DB
 - DAQ, ROD, FEB, Calib Board configurations
- 2) Online Book-keeping DB
 - Beam energy, table position, beam type, ...
 - Previous LAr TB used LArBookkeeping (Grenoble)
 - TDAQ uses a private "OKB" DB
 - LAr moving to single conditions DB including book-keeping
- 3) Conditions DB: Online
 - Calibration constants (OF weights etc.)
 - Also collects monitoring histograms, etc.
 - Can collect calibrations from offline (synchronization??)
 - Must be available 24/7, probably in beam hut area

4) Conditions DB: Offline

Mirror online, but accessible from more places

Monte Carlo (both ATLAS and testbeam):

 Moving towards same geometry and persistency as offline (lagging slightly behind)

Online Monitoring

- Previous LAr testbeams: completely homegrown
- Currently working closely with Event Filter groups to write LAr monitoring in HLT compatible algorithms
 - < 10 msec for LVL2, < 100 msec for LVL3 (C. Padilla, CERN)
 - And use of HLT real-time histogramming (M. Bosman, Barcelona)

- LAr software in a phase of rapid evolution
 - Algorithms being added / improved
- Testbeams acting as benchmark
 - Experience from 2002/2003 being built upon
 - Missing pieces in offline code identified, being developed
 - 2004 testbeam being used as goal for restructure
- Canadian groups strongly involved
 - Pioneered the use of ATHENA for testbeam analysis
 - Used in 2002 EMEC+HEC and 2003 FCAL run
 - Current impact muted somewhat by resources (RAs, travel)
- Looking forward to 2004 and beyond