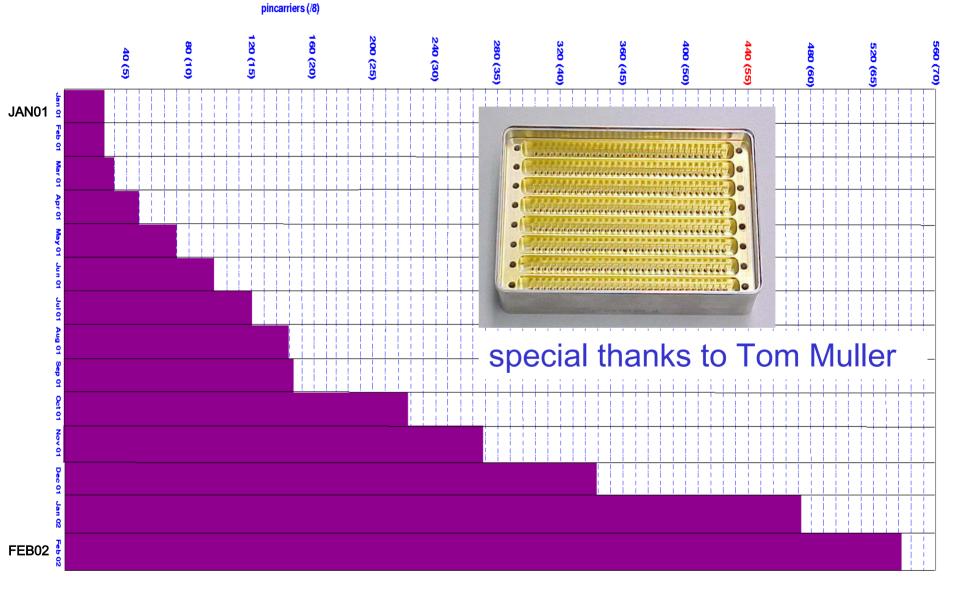
ATLAS Endcap Signal Feedthrough Project

ATLAS LAr week 18 November 2002

- Status Report
 - Pin carrier Procurement Summary
 - Feedthrough Production
 - QA/QC
 - Shipment to CERN
 - Reception Tests at CERN
 - Feedthrough Installation

Michel Lefebvre University of Victoria Physics and Astronomy

Overview


Seal ring OD = 326.4 mm

Total height = 699.9 mm

Responsibilities

- Design
- Fabrication
 - Signal Pigtails purchased from Orsay
- Commissioning
- Transport
- Reception
 - Electrical and ambient vacuum testing
 - Leak tester provided by ATLAS CERN
- Electrical tests after installation
- Assistance during installation
 - Assistance during welding on the cryostat
 - Manpower to connect warm cables to ambient flange

Pin Carrier Procurement Summary

Feedthrough Production

Production at the University of Victoria All 55 feedthrough units produced (last on 25 Oct 2002)

Feedthrough Production

Production at the University of Victoria All 55 feedthrough units produced (last on 25 Oct 2002)

last welds

last dye penetrant tests

last cold test

Feedthrough Production

Last feedthrough produced at UVic on Oct 25 2002

```
in Dec 01 we predicted 15 Oct 2002!! radiation tests on last pigtails took place Nov 7-8. Awaiting results.
```

The successful production of the endcap signal feedthroughs would not have been possible without the help of many....

```
TRIUMF (Chris, Alan, ...)

Orsay (Daniel, Laurent, Aboud, Pierre, Christophe, ...)

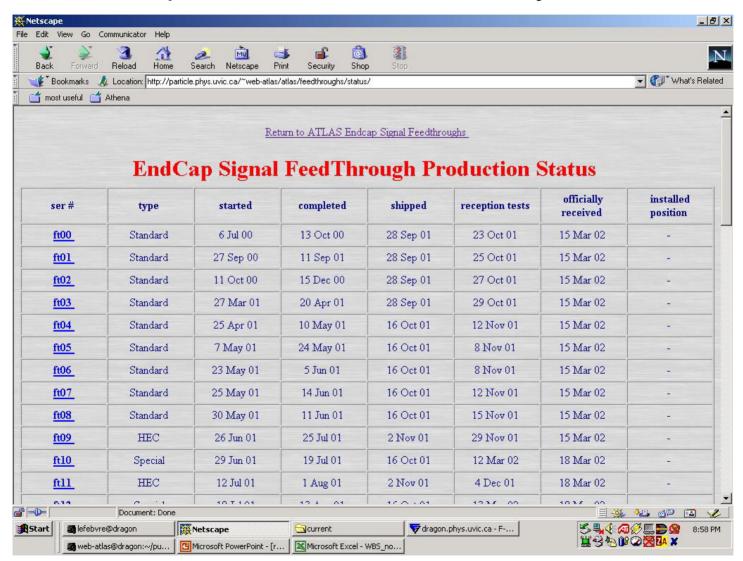
BNL (Howard, David, Dave**2, Tom, Bob, Ken, ...)

CERN (Pierre, Allain, Patrick, Martin, ...)

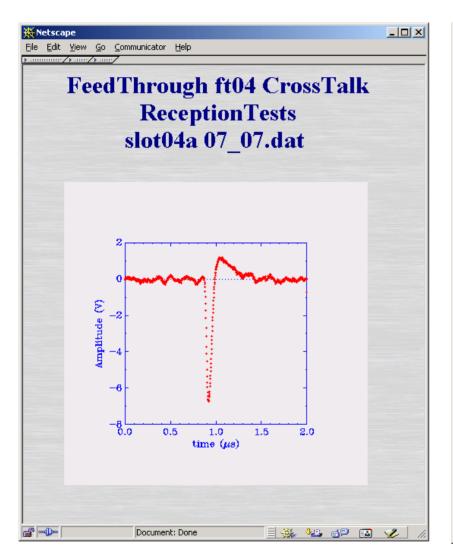
UBC (Dave, electronics shop)

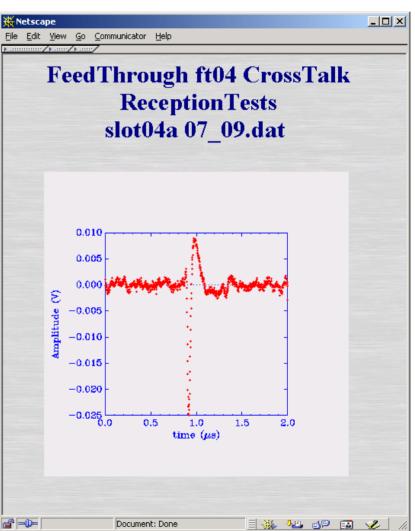
UVic (Physics and Astronomy Dept, machine and electronics shops)
```

QA/QC was critical to the success of the project

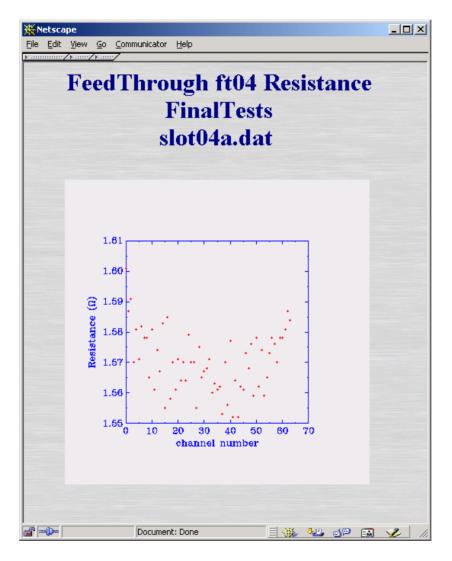

Very detailed document available (QA/QC version 5, Mar 02)

All information stored in a purpose-built database


- material traceability
- production and reception test results
- available on the web:


http://particle.phys.uvic.ca/~web-atlas/atlas/feedthroughs/status/

production status summary



cross talk measurements at UVic and at CERN

resistance measurements at UVic

Shipment to CERN

crated feedthroughs

last produced feedthrough in crate (Oct 2002)

Each feedthrough has its own crate 4 feedthrough crates are then crated together for shipment 50 feedthrough units now at CERN

remaining 5 to be shipped as soon as new pigtail connector material has passed irradiation pollution tests

Reception Tests at CERN

Feedthrough units are tested upon reception at CERN:

- visual inspection
- leak test (ambient temperature)
- electrical test (cross-talk)

The electrical testing equipment will also be used on the cryostat after feedthrough installation

46 units tested at CERN, the rest to be tested soon

Feedthrough Installation

The endcap signal feedthrough are very important and expensive components of the LAr system

ECC: 16 standard, 4 special, 4 HEC, 1 FCAL = 25 ECA: 16 standard, 4 special, 4 HEC, 1 FCAL = 25 Others: 3 standard, 1 special, 1 HEC = 5

They are handed to ATLAS tested and clean

There are 4 types of endcap feedthroughs. There are very few spares and very few spare parts (except pin carriers). We only have 3 spare FCAL pigtails.

One damaged pigtail = a feedthrough to rebuild at UVic

More than 3 damaged FCAL pigtails = 6 months delay for LAr

We now have less resources to build feedthroughs.

Feedthrough Installation

Two persons at CERN for assistance during installation

- foresee 1.5 months for installation on ECC
- foresee 1.5 months installation on ECA
- about 1.5 months for warm cable installation and final electrical tests

Special testing equipment has been developed for the warm cable insertion

- bent pin indicator (to give early warning of bent pins while installing a warm cable)
- a short-to-ground indicator
- a cross-channel-short indicator (to check for cross-channel shorts in the warm cable after installation)
- a pigtail ATI / baseplane interface for use during the post-installation cross talk tests (BNL was using a warm cable for their TDR test interface, which caused problems since the warm cables are not designed to stand up to many plugins)