Frequency dependent Measurement and theoretical Prediction of Characteristic Parameters of Vacuum Cable Micro-Striplines

LArg week, Nov.18 2002	Margret Fincke-Keeler	Univ. of Victoria

- Risetime of a typical ATLAS LAr pulse is approx. 20 ns, corresponding to a bandwidth of 17.5 MHz.
- Explore the frequency dependent behaviour of the vacuum cable micro-striplines by performing measurements of the complex characteristic impedance as a function of frequency up to 100MHz.
- Calculate characteristic parameters under the assumption that the high frequency TEM mode approximation can be used.

Measure:

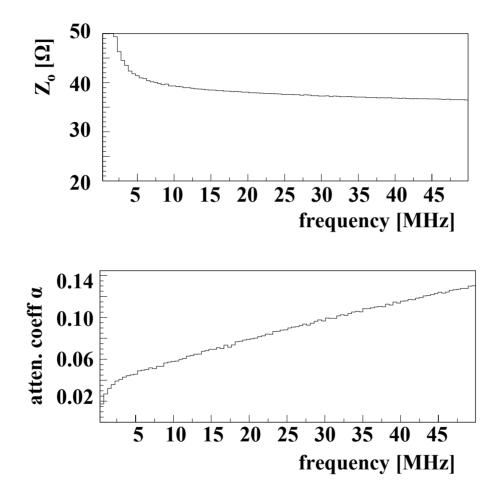
magnitude and phase of the stripline impedance for open circuit and short circuit termination:

$$|Z_{oc}|$$
 ϕ_{oc} $|Z_{sc}|$ ϕ_{sc}

 \rightarrow complex impedances $\,Z_{oc}\,,\,\,Z_{sc}$

Calculate the complex characteristic impedance:

$$Z_o = \sqrt{Z_{sc} Z_{oc}}$$


And the quantity:

$$\tanh(\gamma l) = \sqrt{Z_{sc} / Z_{oc}}$$

With:
$$l = \text{length of stripline}, \quad \gamma = \text{propagation coeff.} = \alpha + i\beta$$

 $\alpha = \text{attenuation coeff.} \quad \beta = \text{phase change coeff.}$

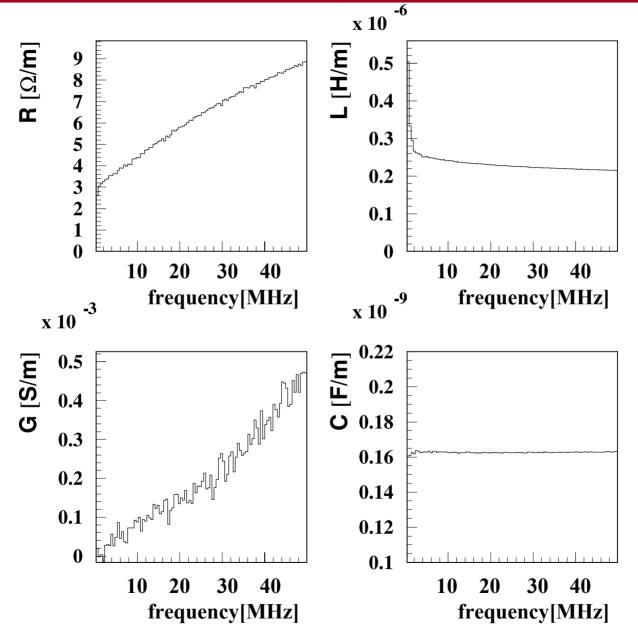
LArg week Nov. 2002

Impedance and attenuation coefficient

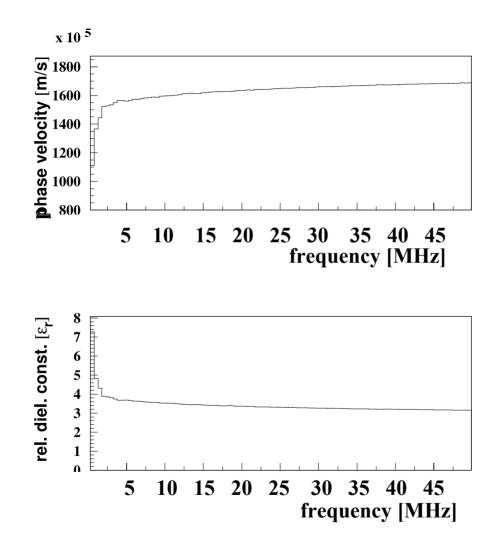
Calculate:

Resistance
$$R = \Re e(\gamma \sqrt{Z_{sc} Z_{oc}})$$

Inductance $L = \Im m(\gamma \sqrt{Z_{sc} Z_{oc}})/2\pi v$
Conductance $G = \Re e(\gamma / \sqrt{Z_{sc} Z_{oc}})$
Capacitance $C = \Im m(\gamma / \sqrt{Z_{sc} Z_{oc}})/2\pi v$

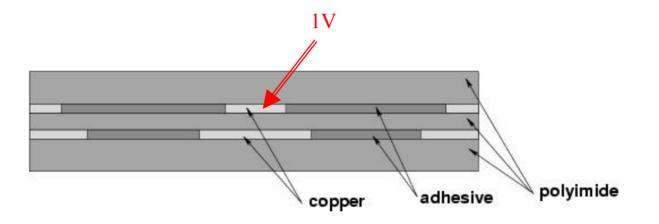

Phase velocity:
$$\upsilon_p = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{c}{\sqrt{\mu_r\varepsilon_r}}$$

Dielectric constant:


$$\mathcal{E}_r = \frac{c^2}{v_p^2}$$

LArg week Nov. 2002

Primary transmission line parameters: R, L, G, C



Phase velocity and relative dielectric constant

Theoretical description

For a given strip line geometry, solve Laplace's equation numerically to obtain the capacitance per unit length.

Do the calculation twice: once with $\varepsilon_r=0$ around the copper strips (vacuum) once with ε_r for polyimide and adhesive materials.

Obtain: capacitance of Cu strips in vacuum C_v capacitance of Cu strips in dielectric C_{ϵ}

$$= \sum \qquad Z_o = \frac{1}{c} \sqrt{C_v C_\varepsilon}$$

M. Fincke-Keeler Univ. of Victoria

LArg week Nov. 2002

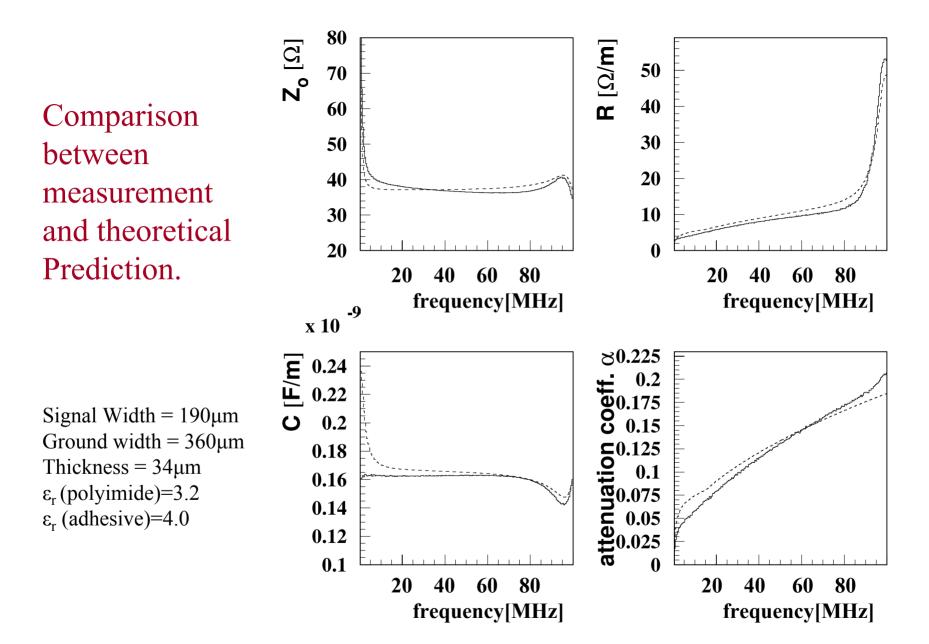
	signal width	ground width	strip thick- ness	ε _r Poly- imide	ε _r adhe- sive	C _v	C_{ϵ}	Z _o	
Α	200	360	34	3.2	4.0	51.4	172.5	35.4	
В	200	360	34	3.4	4.0	51.4	182.4	34.4	
С	200	360	34	3.2	4.4	51.4	174.1	35.4	
D	200	360	30	3.2	4.0	51.0	171.8	35.6	
E	190	360	34	3.2	4.0	49.7	167.6	36.5	←
F	180	360	34	3.2	4.0	48.3	162.4	37.6	
G	180	315	34	3.2	4.0	47.2	158.8	38.5	
Η	220	385	34	3.2	4.0	55.0	171.8	34.3	
Ι	200	360	34	3.2	4.0	51.2	172.1	35.5	
	(20µ)								J

LArg week Nov. 2002

Now we can calculate:

$$L = \frac{1}{c^2 C_{\nu}}$$

We can determine R from the resistivity of copper and the cross sectional area of the copper strips. The skin effect has been taken into account in a simplified approximation. Now we can calculate:


$$\gamma = \sqrt{(R + i\omega L)(i\omega C)}$$

and it follows:

$$Z_{oc} = Z_o \coth(\lambda l_{oc}) \qquad \qquad Z_{sc} = Z_o \tanh(\lambda l_{sc})$$

where l_{oc} , l_{sc} are the electrical lengths of the stripline with open circuit and Short cuircuit termination respectively.

LArg week Nov. 2002

Conclusions

- The complex characteristic impedance of the vacuum cable micro-striplines has been measured as a function of frequency.
- A numerical solution of Laplace's equation yields the values of the capacitances C_v and C_{ε} of the copper strips in vacuum and in dielectric respectively, and allows the calculation of the characteristic line parameters for that geometry.
- The results of the theoretical calculations are in good agreement with the measurement.

The differences between the calculation and data are most likely due to the approximation and assumptions made for the calculations (e.g. high freq. TEM mode, skin effect).