Study of pion response using the new FFT OF weights

Tamara M. Hughes University of Victoria

LAr Week January 2004

Methods

- •All analysis done using TBRootAna package (M. Lefebvre and I. Gable)
- Work in electromagnetic scale with • EMEC: a_{em} = 0.0003855 GeV/nA • HEC: a_{had} = 0.003266 GeV/nA
- For now, working with a fixed list of cells for a given impact point instead of a clustering algorithm
- •Resolution minimized through the parameter x
 - $\bullet E_{\text{meas}} = a_{\text{em}} * E_{\text{EMEC}}(nA) + x * a_{\text{had}} * E_{\text{HEC}}(nA)$

Confirmation of Method

- •Test performed on work previously presented by N. Kanaya
- Resolution for electrons does improve greatly

Effect of new FFT OF weights on pion runs

- •Cut made on events to restrict to a 22 ns "good" timing window
- •EMEC energy reconstruction shows strong response dependence on global time
- •New EMEC weights produce practically same results as old EMEC weights

Energy Dependence on Global Time in HEC

- Energies normalized and various pion runs plotted together
- •Energy dependence in HEC is not affected by the new EMEC weights, as expected!

•New EMEC weights produce practically same results as old EMEC weights

Energy Dependence on Global Time in HEC and EMEC

- Global time dependencies in the HEC and EMEC response appear to cancel each other
- Making timing correction seems to have negligible effect on hadronic resolution

Prospects for Future Work

- Further investigate why the new OF weights do not correct the global time dependence of pion response
- Investigate hadronic weighting schemes