
1

ATLAS Internal Note
LARG-No-93

24-03-98

SPAC : Serial Protocol for the Atlas Calorimeter

R.Bernier, D.Breton, P.Cros (LAL ORSAY), A.Gara (NEVIS labs).

Version 1.0

January 26th 1998

The aim of this protocol is to provide the loading and reading of all registers and
memories sitted on the calorimeter of the ATLAS detector. It has been studied to be fast
(10Mbit/s), reliable (the error detection rate is high) and cheap. The slave interface fits in an
unique circuit and offers several facilities (SPAC -> VME transcoder to drive a VME bus thus
allowing crate interconnections, JTAG outputs for on board FPGA programming, ...). The
SPAC bus can be PECL/BTL and uni/bidirectionnal. The user’s software is written in C, and
graphic interfaces are running on UNIX and MacIntosh. The SPAC bus induces very low noise
and small power consumption. The protocol is simple and powerful, and allows a immediate
understanding of data transfers with an oscilloscope.

As the possibilities of the SPAC bus seem wide, it could also be used for many other
applications.

SPAC
 slave

SPAC
master
board

16-bit register

32-bit register

FIFO

RAM

SPAC Bus

SPAC general view

8-bit register

BTL: 2 or 4 wires
PECL: 4 wires

Optical: 2 wires

Host board

VME
crate

JTAG

2

 1. Description

 1. 1. Main features

The main points of this one-master n-slaves bus are described below. The following
definitions allow any kind of transfer, including as many words as desired, in each direction
between the master and the slaves. The specific adaptations for custom applications are left to
the choice of the users. Nevertheless, some concrete propositions are made concerning the
block mode transfers.

Here are the main features of the SPAC bus :

• The protocol requires only two bidirectionnal wires in BTL technology : SCL for
clock/strobe, SDA for data. But it can be used identically with four unidirectionnal
wires, in BTL or PECL technology. The master and slaves can either be considered as
emitters or as receivers on the line.

• There is no problem of master arbitration as this bus is single-mastered by definition.
Nevertheless, to prevent the collisions from different slaves, the protocol forbids the
broadcast reading command, except after a checksum error and only for reading the
slave status register.

• Each slave connected to the bus is addressable by a unique 7 bit address. One address
is reserved for the global broadcast mode, which allows the addressing of all of the
slaves. Moreover, 15 other addresses are reserved for local broadcast modes, which
allow the addressing of various groups of slaves, defined by the users. These groups
realise a partition of the totality of the slaves (each slave belongs to one group). The
broadcast modes are only available for write commands coming from the master.

• The data always travel in the same direction as the clock. Data is transfered at 10Mbit/s.
The slaves use their local 40MHz clock to generate the 10MHz return data clock, so no
additional clocks are needed. The slave interface clocks are internally resynchronized
during each transfer from the master.

• The data packets are 9bit long (see below) with always exactly one missing clock
period between packets. This allows to separate clearly the packets for simplicity
purpose and gives time for data transfer within the receiver (this will help to simplify
the receiver electronics). The 9bit words are tranfered with LSB first (this allows the
checksum to be calculated sequentially).

• The SDA and SCL lines follow the start and stop conditions of the I2C protocol.
Conversely, there will be no acknowledge from the slave during a data transfer as this
is the limiting point for the bus speed. In a general way, all the timings are secure
while several conditions about the board distances are respected. This makes this
system very safe.

• To prevent the collisions, the emitter always checks that the line is not busy before
taking hand on it. Moreover the open collector structure protects the bus against any
short.

• The format of the response to a read request is the same as the format of the request
except for the direction bit in the first word. This means that the data contained in the

3

two first words is a copy of the one received from the master. This allows crosscheck
and makes the control software more convenient.

• The slave provides a JTAG output in order to program any other FPGA on the host
board.

SDA

SCL

Start
condition

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 88

0 1 2 3 4 5 6 7 88

Stop
condition

0

0

First word

Data word (N words)

Last word

Format of standard data transfers in the SPAC protocol

LSB

Checksum bit

Missing clock

Direction bit

0 1 2 3 4 5 6 7 88 0

Second word

MSB

R/W

Slave address

Object address

Data

Checksum

SDA

SCL

Interrupt Stop
condition

Start
condition

SDA and SCL lines pulled to zero

0 1 2 3 4 5 6 7 8 9

Format of the interrupt in the SPAC protocol

4

 1. 2. Frame description

The 9bit data packets look as follows...

bit # 8 7 6 5 4 3 2 1 0

1st
word

0 direction [a d d r e s s]

2nd
word

0 R/W [s u b a d d r]

3rd
word*

0 [... . . . d a t a]

4th
word*

0 [... . . . d a t a]

. . .
*

0 [... . . . d a t a]

last
word

1 [c h e c k s u m]

* : these words are optionnal.

The first word contains the board address and a bit to select the direction (1 for the
master -> slave transfer and 0 for the other direction). The broadcast mode definition is included
in the address field. The second contains the R/W bit and the internal subaddress.

The number of additional data words is unspecified. The last word will transmit a
checksum which allows the receivers to check for errors. The last bit 8 will be a flag for
recognizing this checksum word.

After any master -> slave transfer on the line, all the concerned slaves verify the validity
of the checksum byte, and the correct reception of the frame. In case of error, the slave sends an
interrupt back to the master. An interrupt can also be sent on an external request, that has to be
managed by the user. The slave status register can inform the master if the interrupt comes from
a bus error or an external command.

The interrupt signal consists of pulling down both SDA and SCL lines during a normal
9bit command length. The master will then check the slave status register before taking a
decision.

5

S
Slave address

7 bits
Direction
 1bit = 1

0
Subadd
7 bits

R/W
1 bit = 0

0
Data
8 bits

0 P

The master loads an 8bit-register within one slave.

Checksum
8 bits

1

S
Slave address

7 bits
Direction
 1bit = 1

0
Subadd
7 bits

R/W
1 bit = 1

0 P

The master asks for reading an 8 bit register within one slave.

Checksum
8 bits

1

Examples of data transfers in the SPAC protocol

A slave sends the content of an 8 bit register to the master.

S
Slave address

7 bits
Direction
 1bit = 1

0
Subadd
7 bits

R/W
1 bit = 0

0
Data
8 bits

0

The master loads a 16bit-register within one slave.

P
Checksum

8 bits
1

Data
8 bits

0

The master asks for reading a 16 bit register within one slave.

Wordcount

A slave sends the content of a 16 bit register to the master.

S
Slave address

7 bits
Direction
 1bit = 0

0
Subadd
7 bits

R/W
1 bit = 1

0
Data
8 bits

0 P
Checksum

8 bits
1

S
Slave address

7 bits
Direction
 1bit = 1

0
Subadd
7 bits

R/W
1 bit = 1

0
Data
$02

0 P
Checksum

8 bits
1

S
Slave address

7 bits
Direction
 1bit = 0

0
Subadd
7 bits

R/W
1 bit = 1

0
Data
8 bits

0 P
Checksum

8 bits
1

Data
8 bits

0

6

S Slave address
7 bits

Direction
 1bit = 1

0 Subadd
7 bits

R/W
1 bit = 0

0 Data
8 bits

0 P

The master loads a 32 bit register within one slave.

Checksum
8 bits

1Data
8 bits

0

4 words

The master asks for reading a 32 bit register in one slave.

S
Slave address

7 bits
Direction
 1bit = 1 0

Subadd
7 bits

R/W
1 bit = 1 0

Data
$04 0 P

Checksum
8 bits 1

Wordcount (Most significant byte set to 0 by default)

A slave sends the content of a 32 bit register to the master.

4 words

S Slave address
7 bits

Direction
 1bit = 1

0 Subadd
7 bits

R/W
1 bit = 1

0 Data
8 bits

0 PChecksum
8 bits

1Data
8 bits

0

The master loads a FIFO within one slave.

The master asks for reading a FIFO within one slave.

Wordcount

A slave sends the content of a FIFO to the master.

S Slave address
7 bits

Direction
 1bit = 0

0 Subadd
7 bits

R/W
1 bit = 1

0 Data
8 bits

0 PChecksum
8 bits

1Data
8 bits

0

S
Slave address

7 bits
Direction
 1bit = 1 0

Subadd
7 bits

R/W
1 bit = 0 0

Data
8 bits 0 P

Checksum
8 bits 1

Data
8 bits 0

N words

N words

S
Slave address

7 bits
Direction
 1bit = 0

0
Subadd
7 bits

R/W
1 bit = 1

0
Data
8 bits

0 P
Checksum

8 bits
1

Data
8 bits

0

A slave sends the content of a RAM in block mode to the master.

N words

The master loads a N*word RAM within one slave (the NTA has previously been loaded).

N words

The master asks for reading a RAM in block mode in one slave (the NTA has previously been loaded).

Wordcount

The master loads a 16bit-register within a group of slaves in broadcast mode.

defines a broadcast group

The master asks for reading the slave status register of a group of slaves in broadcast mode, after an interrupt.

defines a broadcast group status register subaddress

S
Slave address

7 bits
Direction
 1bit = 1 0

Subadd
7 bits

R/W
1 bit = 0 0

Data
8 bits 0 P

Checksum
8 bits 1

Data
8 bits 0

S
Slave address

7 bits
Direction
 1bit = 1 0

Subadd
7 bits

R/W
1 bit = 1 0

Data
8 bits 0 P

Checksum
8 bits 1

Data
8 bits 0

S Slave address
7 bits

Direction
 1bit = 0

0 Subadd
7 bits

R/W
1 bit = 1

0 Data
8 bits

0 PChecksum
8 bits

1Data
8 bits

0

S Slave address
7 bits

Direction
 1bit = 1

0 Subadd
7 bits

R/W
1 bit = 0

0 Data
8 bits

0 PChecksum
8 bits

1Data
8 bits

0

S Slave address
7 bits

Direction
 1bit = 1

0 Subadd
$01

R/W
1 bit = 1

0 PChecksum
8 bits

1

(no wordcount is required for the NTA and status register)

7

 1. 3. About the collisions

Concerning the collisions, all the slaves and the master are permanently spying the data
transfers. They can’t speak if the line is busy, even for sending an interrupt. The protocol is
intended so that no collision is possible between data transfers. The only possible collision may
be due to an interrupt crossing a master to slave data transfer. This can happen only in two cases
: either there was a checksum error detected by an adressed slave, or an external interrupt was
generated in a slave board. There are two different ways of dealing with such a occurrence :

a) When the master has to emitt, it waits for a back to back propagation delay on the line plus
some extra time before sending a new command. Then it gives time to a possible interrupt due
to a cheksum error to arrive and avoids collision.
b) If the master doesn’t wait between commands, or in case of an external interrupt, an occuring
interrupt may destroy a current data transfer. The master detects the interrupt and immediatly
stops the transfer. Parallely, all the slaves go back to idle state. Then the source of interruption
is looked for through the broadcast read status command. The stopped transfer will resume
later.

In case of a broadcast write, a checksum error could be seen by several slaves, and
generate the sent of several interrupts at the same time. Then the open collector structure
prevents the short circuits, and the interrupt message is not modified by superposition.

Moreover, if a broadcast read status is requested, each of the slaves will wait for a
different delay (address × 100 ns) after each transfer. So, if the user respects some distance
conditions (less than 10 meters between any couple of slaves), no collision is possible. In this
case, a software delay depending of the number of slaves and their addresses should be
calculated for giving time to the master to wait for all slave replies.

 1. 4. Distance conditions

The maximum distance between any set of two slaves usable with the BTL level bus is
10 meters. The master should not be placed too far of the first slave for impedance adaptation
reasons. In the case of a single master/single slave BTL implementation, the distance could go
up to 30 meters.

The safest way to use the bus over a long distance is to use the differential link with
PECL levels and transceive the levels into BTL around the slave physical location.

 1. 5. Error protection

Since the error rate is low and the protocole allows the master to repeat a message on a
slave request (interrupt), it is no use to correct the errors (a correction device is very heavy, and
expensive). The major point is to be able to detect the errors, and flag them.

8

stop bit
&

start bit

wrong data
&

start bit

start bit
&

stop bit

start bitwrong data
&

stop bit

wrong data
wrong data

&
1 more clock

1 more clock

SDA

SCL

Normal frame

Errors on the data

Errors on the clock

Typical error sources

Two typical errors can occur :
• Most of the time the errors will generate a frame syntax error , that is to say one more

clock period, or an unexpected start or stop bit. These errors will generate a frame
syntax error, and most of the time a checksum error. Their detection is systematical. A
frame can’t be changed without generating an error, so the error detection rate is
100%. It also should be quoted that any glitch that modifies the data reception
generates a frame syntax error.

• In a few cases, data can be changed without generating a frame syntax error. This can
only happen if the line is held at a wrong value for at least 25 ns on SCL, and 50 ns on
SDA (the glitches are excluded). Then, the checksum error flag should be set to one. A
simple calculation shows that if ε0 is the error rate per word (that doesn’t generate a
syntax frame error) and n the number of words in the frame, then the probability of
missing a data error is approximatively of :

η = (n-1).n2ε0
2/(8n-1)

ex: n=10 ; ε0 = 10-6 err/word (<-> 1err/s) -> η = 10-11 err/word

A frame syntax error may freeze the bus in an waiting state if no stop bit is seen. A
 timeout is programmed in the FPGAs. If one of them is busy for more than the longest message
that can be sent, then the timeout device puts the slaves or the master in the idle state, and sets
the timeout flag to one. The timeout waits for 786433 clock periods, i.e. 79 ms (10 Mhz clock).

In conclusion, the chance of missing an error is extremely low, and in no case the slave
or the master can remain blocked in a wrong state. The SPAC bus error detection is thus very
reliable.

9

 1. 6. System hardware for test beam.

SPAC serial link distribution
for ATLAS test beam

 ROD VME crate

S
P
A
C

WORKSTATION
R
O
D

 Front-End crate

C
A
L

T
T
B

R
O
D

F
E
B

4 PECL differential links

4 BTL open-collector links

SPAC protocol

Master

S
P
A
C

Repeater

Slaves

For the test beam that will occur at CERN in 1998, the system will be used with the
following hardware implementation :

- 4 wire bus in the front-end crate.
- BTL logic levels.
- one repeater board in the crate which will be connected to the master with 4 differential
PECL links.

 1. 7. Performance considerations

Let us assume that we have to load a configuration of 40 registers and a RAM of 50 kB for each
front-end board, and that we have 15 front-end boards in the crate.

1. 7. 1. Time to load the front-end boards

To write a 16-bit register, we have to send a 5 word frame. For all the registers, 200
(40×5) words are necessary. If we load the RAM with 10 kB accesses for example, we have to
load once the NTA (5 words), and 5 times ten kilobyte (10000+3 words).

The whole loading of a board requires 200+5+50015 = 50220 words. As we can write
all the boards in broadcast mode, and that one word corresponds to one µs, the time required to
load the whole crate is : twrite = 50.2 ms.

10

1. 7. 2. Time to read the front-end board

To read a 16-bit register, we must send a read request (4 words) and read the slave reply
(5 words). To read the RAM with 10 kB accesses, we have to load once the NTA (5 words), to
send 5 reading requests (5×5 words), and to read 5 replies (5×(10000+3) words). The total is :

40×(4+5)+5×(5+10003) = 50400 words.

As the broadcast reading is not possible, we have to exchange 15×50400 = 756000
words. The time to read the crate is : tread = 756.0 ms.

1. 7. 3. Time to write and read the front-end board
For this operation , we have to exchange 50220+756000 = 806220 words. The time to

write and read is : twr/rd = 806.2 ms.

11

 2. Hardwar e user’ s guide

 2. 1. The SPAC master board

The SPAC master board is intended to be put in a VME crate, and driven by the VME bus.

2. 1. 1. The architecture

Architecture of the SPAC bus master

Receiver
 &
 Emitter

9 bits

Checksum
calculation

9

SDA

SCL

9

Emitter
FIFO

Receiver
FIFO

Control

Status register

VME

Data

internal
10 Mhz

16

Timeout

2. 1. 2. The VME master communications

12

15..010XXrd

Identifier

15..012XXrd

Master status

8..01EXXrd/wr

Emitter FIFO

8..018XXrd/wr

Receiver FIFO

none10XXwr

Reset

012XXwr

Start

none14XXwr

Clear alarms

none1CXXwr

Reload emitter FIFO

Infos

Data

Commands

Master accesses

15..0rd/wr

Object

15..0

Access type

Address field used (X=any value)

Data field used

VME bus

VME data bus

15 0

VME add bus

23 01516

VME add mod bus

5 0

7..0

Board address (switches)

Standard mode (AM = $39 or $3D)

• Identifier returns A110 in hexadecimal (16 bits)
• Master status is a 16 bit register :

29 Master checksum error
28 Timeout
27 Interrupt
26 Ready to receive message
25 Ready to send message
24 Receiver FIFO empty
23 Receiver FIFO full
22 Emitter FIFO empty
21 Emitter FIFO full
20 Run

Run : one bit register allowing the master to emitt.
Ready to send message is set to one if :

-Emitter FIFO empty =0 (means that EmitterFIFO is not empty)
-Receiver FIFO full =0 (to prevent data crashing)
- the bit 28 of the last word loaded in the EmitterFIFO is one (last word of a
message)

Ready to receive message is set to one if :
- Receiver FIFO empty =0
- the bit 28 of the last word loaded in the ReceiverFIFO is one

Interrupt is set to one when an interrupt signal has been transmitted from a slave.
This flag cannot appear with any other data transfer. No information is loaded
in the ReceiverFIFO.

13

Timeout occurs when a slave has received a deficient message from the master. The
ReceiverFIFO contains a one word message which contains the address of the
complaining slave.

Master checksum error occurs when the master has received a deficient message
from a slave. ReceiverFIFO contains the whole message. Its first word is the
(supposed !) address of the complaining slave.

• Reset : resets the board during the access.

• Run : this bit controls the activity of the master. If Run is set to one, the master will
begin to emitt as soon as the internal flag Ready to send message goes to one.

• Clear alarms resets Interrupt, Timeout and Master checksum error. Otherwise, these
flags are never cleared !

• Reload emitter FIFO : moves the reading pointer of the Emitter FIFO to the first word.
Thus, the FIFO is ready to be read again. A very careful use of this function should be
made.

 2. 2. The SPAC slave installation

The SPAC slave FPGA will be implemented on the user’s board.

VME bus

SDA

SCL

SPAC
master

3 FPGAs

SPAC
 slave

1 FPGA

Inputs/outputs of the SPAC bus

SlaveAddress<6..0>

LocalBroadcastAddress<3..0>4

7

SerialOutEnable
8

6

7

16

4

Data <7..0>

Subadd <5..0>

ChipSelect *<7..2>

NTA <15..0>

Byte number <3..0>

Read*

Write*

Interrupt

Reset*

Clk40MHz

SDAout

SCLout

SDAin

SCLin

Host boardMaster board

4 JTAG <3..0>

14

2. 2. 1. The architecture

Data Register
9 bits bidirectionnal

Checksum Calculation

Subaddress Register NTA Register

WordCount Register

Control
device Data

NTA

Subadd

SDAout

SDAin
SCLin

SCLout

Decoder

Byte number

ChipSelect*

Decoder

Read*
Write*Interrupt

40 MHz Clk

8

16

4

7

6

3

Architecture of the SPAC bus slave

Reset*

Slave Address 7

SerialOutEnable

Status Register
TimeOut

 LBA
 (Local Broadcast
 Address)

4

JTAG Register
4 JTAG

3 3

2. 2. 2. The Slave SPAC accesses

• Address defines a slave seen from the SPAC bus. Address is generated with a 7-bit
switche on the host board. The address<6..0> range is not wholly available :

free

7F

. . .

10
local

broadcast
call

0F
. . .
01

global broadcast call 00

• Local broadcast address defines the broadcast group of a slave. 15 different groups
can be chosen, using a 4-bit switch on the host board.

15

• Subadd defines an object that the slave corresponding to address can access. The
subadd array is structured as shown :

3F

free

03
JTAG 02

status register 01
NTA 00

2. 2. 3. How to build a message
The general form of the message to transfer through VME is the following one (remember that
the checksum word exists in the data transfers through the SPAC bus, but is not transfered
through VME) :

bit # 8 7 6 5 4 3 2 1 0

1st
word

0 1
(direction)

a d d r e s s

2nd
word*

0 (1 if no
data)

R/W s u d a d d r

3rd
word*

0 d a t a

4th
word*

0 d a t a

. . .
*

0 d a t a

last
word

1 d a t a

*:optionnal words

• The direction bit is set to 1 for a master to slave transfer, so the user will always give
the value 1 to direction.

• R/W is set to1 for a reading request, 0 for a writing one.

The transfer is always big endian, that is to say that the first byte sent is the less significant, and
the last one the most, in a 16 to 32-bit register. This rule applies for the NTA (16 bits), the
wordcount (16 bits), and any register bigger than 1 byte.

In case of a write command (R/W=0), the data will be sent to the object pointed by subadd .
In case of a read command (R/W=1), the data will be sent to the 16-bit wordcount register. As
the transfer is big endian, and the wordcount is set to $0001 before any loading, it is possible to
send only one data word in a read command, if the wordcount is below $00FF. Indeed, the
most significant byte of the wordcount will be 0 by default.
 Two other special cases should be noticed. In a command for NTA reading, it is no use to load
a value into the wordcount. The size of the NTA register (2 bytes) is internally known. And in a
command for FIFO reading, the user can either load a value (n≤FFFF) to the wordcount, in
order to read n bytes from the FIFO, or not load any data. Then, the whole FIFO will be read
(until reception of a FIFO empty flag).

16

2. 2. 4. How to read a slave reply

The message brought back through VME appears as below. The slaves can only reply to the
master, so direction = 0, and R/W =1. Address contains the address of the slave which is
talking. Subadd gives the address of the object being read.

bit # 8 7 6 5 4 3 2 1 0

1st
word

0 0
(direction)

a d d r e s s

2nd
word*

0 1
(R/W)

s u b a d d r

3rd
word*

0 d a t a

4th
word*

0 d a t a

. . .
*

0 d a t a

last
word

1 d a t a

*:optionnal words

In case of an interrupt, the message is empty, but the interrupt flag of the master status register
is set to 1.

2. 2. 5. The slave state machine

The slave is composed of one module, which is integrated within an FPGA. It can
address FIFOs, RAMs, registers up to 32 bits and other memories.

Whatever the type of your memory, the slave generates 2 buses, which will be used or not :
- Byte number which gives the number of the byte of a pointed register
- Next address register (NTA) which gives the RAM address pointed

In case of a read command, the number of bytes to read is loaded in an internal 16-bit
register, Wordcount. This register is special because it doesn’t have any address, is written by a
special protocol, and cannot be read (which anyway is no use). $0001 is loaded by default.

In case of a RAM access, data will be sent to the internal address loaded in the 16-bit
next transfer address register (NTA). Any access to a RAM (read & write) implies a previous
loading of the board's NTA.

17

Seen from the slave, the general protocol is desribed below:

Slave actions

write received

(NTA already loaded in case of a RAM access)
byte number = 1

Loop:
next data byte -> memory

byte-number incremented (1 to 4)
NTA incremented (0 to $FFFF)

goto Loop

received
no data byte -> (wordcount = 1 by default)
or 1 data byte -> wordcount (= 1 to $FF)

or 2 data bytes -> wordcount (= 1 to $FFFF)

read

replied

(NTA already loaded in case of a RAM access)
byte number = 1

Loop:
memory -> next bytes read

byte-number incremented (1 to 4)
NTA incremented (0 to $FFFF)

Wordcount decremented
Loop until Wordcount = 0

memory
pointed with subadd

18

2. 2. 6. The timings of the signals between the slave and the host
board

8-bit register writing

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word checksum word

Hi Z Hi Z

0x00 0x02

ChipSelect<7..2> 0x7F 0x7D

NTA<15..0>

ByteNumber<3..0>

0x0000

0x1

16-bit register writing

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word data word checksum word

Hi Z Hi Z Hi Z

0x00 0x03

ChipSelect<7..2> 0x7F 0x7B

NTA<15..0>

ByteNumber<3..0>

0x0000

0x1 0x2 0x4

0x0001 0x0002

0x1

0x00

0x7F

0x1

0x00

0x7F

0 1000 2000 3000 4000 5000 ns

32-bit register writing

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word data word checksum word

Hi Z Hi Z Hi Z

0x00 0x05

ChipSelect<7..2> 0x7F 0x6F

NTA<15..0>

ByteNumber<3..0>

0x0000

0x1 0x1 0x8 0x8

0x0004 0x0005

FIFO writing

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word data word checksum word

Hi Z Hi Z Hi Z

0x00 0x1C

ChipSelect<7..2> 0x7F 0x7F

NTA<15..0>

ByteNumber<3..0>

0x0000

0x1 0x1 0x8 0x8

0x0000 0x27DA

0x05

0x1C

0x27DB

0x6F

0x7F

0x1

0x7F

0x00

0x1

0x00

0x7F

0x0000

19

RAM writing (NTA already loaded)

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word data word checksum word

Hi Z Hi Z Hi Z

0x00 0x07

ChipSelect<7..2> 0x7F 0x3F

NTA<15..0>

ByteNumber<3..0>

0x9D0C

0x1 0x1 0x8 0x8

0x9D0C 0x9DFF

0x07

0x9E00

0x3F

NTA register writing

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word data word checksum word

Hi Z Hi Z Hi Z

0x00

ChipSelect<7..2> 0x7F

NTA<15..0>

ByteNumber<3..0>

0x0000

0x1 0x2 0x4

0x000C 0x9D0C

0x00

0x7F

0x00

0x1

0x7F

0x1

0x7F

0x00

8-bit register reading command

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word checksum word

Hi Z

0x00 0x02

ChipSelect<7..2> 0x7F

NTA<15..0>

ByteNumber<3..0>

0x0000

0x01

8-bit register reading execution

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word checksum word

Hi Z Hi Z

0x02

ChipSelect<7..2> 0x7D

NTA<15..0>

ByteNumber<3..0>

0x0000

0x01

Hi Z

0x7D

0x7F

0x00

0x01

Hi Z

20

16-bit register reading command

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word checksum word

0x00 0x04

ChipSelect<7..2> 0x7F

NTA<15..0>

ByteNumber<3..0>

0x0000

0x1

16-bit register reading execution

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word checksum word

Hi Z Hi Z

0x04

ChipSelect<7..2> 0x77

NTA<15..0>

ByteNumber<3..0>

0x0001

0x1

Hi Z

0x77

0x7F

0x00

0x1

data word (0x02) data word (0x00)

Hi Z Hi Z

data word

Hi Z

0x0001 0x0002

0x2 0x4

Hi Z Hi Z

32-bit register reading command

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word (0x04) data word (0x00) checksum word

Hi Z Hi Z Hi Z

0x00 0x06

ChipSelect<7..2> 0x7F 0x5F

NTA<15..0>

ByteNumber<3..0>

0x0000

0x1

32-bit register reading execution

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word checksum word

Hi Z Hi Z

0x06

ChipSelect<7..2> 0x5F

NTA<15..0>

ByteNumber<3..0>

0x0000

0x1

0x7F

0x00

0x1

data word

Hi Z

0x0001 0x0004

0x2 0x8

0x06

0x5F

Hi ZHi Z

21

FIFO reading command

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word (WC) data word (WC) checksum word

Hi Z Hi Z Hi Z

0x00 0x07

ChipSelect<7..2> 0x7F 0x3F

NTA<15..0>

ByteNumber<3..0>

0x51C2

0x1

FIFO reading execution

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word checksum word

Hi Z Hi Z

0x07

ChipSelect<7..2> 0x3F

NTA<15..0>

ByteNumber<3..0>

0x51C2

0x1

0x7F

0x00

0x1

data word

Hi Z

0x51C3 0x54D2

0x2 0x8

0x07

0x3F

Hi ZHi Z

NTA register reading command

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word checksum word

Hi Z

0x00 0x00

ChipSelect<7..2> 0x7F

NTA<15..0>

ByteNumber<3..0>

0x41F6

0x1

NTA register reading execution

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word (F6) checksum word

Hi Z Hi Z

0x00

ChipSelect<7..2> 0x7F

NTA<15..0>

ByteNumber<3..0>

0x41F6

0x1

0x7F

0x7F

0x00

0x1

data word (41)

Hi Z

0x2 0x4

Hi ZHi Z

22

RAM reading command (NTA already loaded)

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word (WC) data word (WC) checksum word

Hi Z Hi Z Hi Z

0x00 0x08

ChipSelect<7..2> 0x7F 0x7F

NTA<15..0>

ByteNumber<3..0>

0x18F6

0x1

RAM reading execution

Data<7..0>

Write

Read

Subadd<5..0>

SDA 1st word 2st word data word checksum word

Hi Z Hi Z

0x08

ChipSelect<7..2> 0x7F

NTA<15..0>

ByteNumber<3..0>

0x18F6

0x1

0x7F

0x00

0x0

data word

Hi Z

0x18F7 0xFFFF

0x2 0x8

0x08

0x7F

Hi Z Hi Z

Read/Write timings

Data<7..0>

Write

Read

Hi Z Hi Z

Data<7..0>

Write

Read

Hi Z Hi ZDataWord

DataWord

0 50 100 ns150

Setup time > 80ns Hold time > 40 ns

Internal write

Internal read

2. 2. 7. The implementation of the slave on its host board

See the spac_kit.ps file on the web.

23

2. 2. 8. The objects implementation

Subadd

Register address

=

Write*

Data
D Q

Read*

8

6

6

Clk

 8-bit
Register

8-bit register implementation

8-bit register

Subadd

Register address = i

=
6

6
ChipSelect *< i >

∈ [2;7]i

Subadd

Register address

=

Write*

Data
D Q

Read*

8

6

6

Clk

 16-bit
Register

16-bit register implementation

D Q

Clk
byte1

byte0

byte0

byte1

Reg16<7..0>

Reg16<15..8>

24

 Write*

D Q

Read*

Clk

 32-bit
Register

32-bit register implementation

D Q

Clk
byte3

byte2 byte2

byte3

Reg16<23..16>

Reg16<31..24>

ChipSelect *< i >
∈ [2;7]i

D Q

Clk
byte1 byte1

Reg16<15..8>

Data
D Q

8

Clk
byte0 byte0

Reg16<7..0>

Subadd

Register address

=

Write*

Data
D Q

Read*

8

6

6

Write

FIFO

FIFO implementation

Read

FIFO Output

The FIFO output buffer can also be
used if FIFO Output is not required

25

Subadd

Register address

=

Data
D Q

Read*

8

6

6

Wr

RAM

RAM implementation

Rd

RAM Output

The RAM output buffer can also be
used if RAM Output is not required

NTA 16 Address
Write*

 2. 3. Standard connectivity

2. 3. 1. BTL technology

• For the bidirectional solution, the connector type is a differential Lemo :

A SDA
B SCL

A shielded 2 wire cable is required.

• For the unidirectionnal bus, a 10 pin connector is used (male HE-10, 2*5 pins) :

gnd 1 2 master to slave SDA
gnd 3 4 master to slave SCL
gnd 5 6 gnd

slave to master SCL 7 8 gnd
slave to master SDA 9 10 gnd

A flat 10 wire cable is required.

2. 3. 2. PECL technology

• A PECL link can only be unidirectionnal. A 10 pin connector is used (the same as
above) :

master to slave SDA - 1 2 master to slave SDA +
master to slave SCL - 3 4 master to slave SCL +
slave to master SDA - 5 6 slave to master SDA +
slave to master SCL - 7 8 slave to master SCL +

gnd 9 10 gnd

A 10 wire cable, with twisted pairs is required.

26

 3. SP AC softwar e user’ s guide

 3. 1. The SPAC library of functions : spac.h

The SPAC library is a set of functions to manage the communications of the SPAC bus.
This library allows a simple use of the SPAC bus, with functions optimized for speed. All the
usual applications of the SPAC bus can be managed by the library. However, the vme library
may be useful for special applications (debugging,...). In any case, the vme library is used by
the SPAC library, and has to be adapted to the VME controller. Conversely, the SPAC library is
universal.

The type SPACMaster is a transparent structure that is wholly defined
SPACDeclareBoard().

SPACMaster* SPACDeclareBoard(u_short CrateNumber, u_short
AddressModifier, u_short BoardAddress);

SPACDeclareBoard defines and initializes a SPAC board. CrateNumber depends on
the VME crate. The accepted values of AddressModifier are 0x39 and 0x3D.
BoardAddress is the VME address of the Master card. The returned pointer ought to be
declared as SPACMaster* because it points to a structure. run is set to one.

void SPACWriteRegister (SPACMaster* Card, u_char Address,
u_char SubAddress, u_long Data, u_char Size);

SPACWriteRegister writes Data in the Size byte(s) register pointed by
SubAddress, on the slave board Address, and from Card. Size must be 1, 2, 3 or 4.
Address set to 0 produces a broadcast write.

u_long SPACReadRegister (SPACMaster* Card, u_char Address,
u_char SubAddress, u_char Size);

SPACReadRegister returns the value of the Size byte(s) register pointed by
SubAddress on the slave board Address, and from Card. Size must be 1, 2, 3 or 4.
This function does not support broadcast, so 0 is not a valid value for Address.

void SPACWriteFIFO (SPACmaster* Card, u_char Address,
u_char SubAddress, u_char* Data, u_short Size);

SPACWriteFIFO writes Size byte(s) of the buffer Data in the FIFO pointed by
SubAddress, on the slave board Address, and from Card. Size must be different to 0.
Address set to 0 produces a broadcast write.

u_char* SPACReadFIFO (SPACMaster* Card, u_char Address,
u_char SubAddress, u_short Size);

SPACReadFIFO returns an allocated buffer, resulting of the Size byte(s) read from the
FIFO pointed by SubAddress, on the slave board Address, and from Card. Size must be
different to 0. This function does not support a broadcast read,so 0 is a forbidden address.

void SPACWriteRAM (SPACMaster* Card, u_char Address, u_char
SubAddress, u_char* Data, u_short Size, u_short
RAMStartAddress);

SPACWriteRAM writes Size byte(s) of the buffer Data from RAMStartAddress to
RAMStartAddress+Size-1 in the RAM pointed by SubAddress, on the slave board
Address, and from Card. Size must be different to 0. Address set to 0 produces a broadcast
write.

27

u_char* SPACReadRAM (SPACMaster* Card, u_char Address,
u_char SubAddress, u_short Size, u_short RAMStartAddress);

SPACReadRAM returns an allocated buffer, resulting of the Size byte(s) read from the RAM
pointed by SubAddress, from the RAM address RAMStartAddress to
RAMStartAddress+Size-1, on the slave board Address, and from Card. Size must be
different to 0. This function does not support a broadcast read,so 0 is a forbidden address.

void SPACRun (SPACMaster* Card, u_char State);
SPACRun modifies the run bit of Card. State can be :

• OFF : to stop the emission.
• ON : to allow the emission.

void SPACReset (SPACMaster* Card);
SPACReset resets the Card.

u_short SPACIdentifier (SPACMaster* Card);
SPACIdentifier returns the identifier of Card. Its value : 0xA110.

u_char SPACMasterStatus (SPACMaster* Card);
SPACMasterStatus returns the Master status value. The result may be used as follow :

• (result & RUN) != 0 : the master can emitt.
• (result & EMITTER_FIFO_FULL) != 0 : Emitter FIFO is full
• (result & EMITTER_FIFO_EMPTY) != 0 : Emitter FIFO is empty
• (result & RECEIVER_FIFO_FULL) != 0 : Receiver FIFO is full
• (result & RECEIVER_FIFO_EMPTY) != 0 : Receiver FIFO is empty
• (result & READY_TO_SEND) != 0 : the Master is ready to send
• (result & READY_TO_RECEIVE) != 0 : the Master is ready to receive
• (result & INTERRUPT) != 0 :an interrupt signal has been transmitted from a slave
• (result & TIMEOUT) != 0 : a Timeout has occurred
• (result & MASTER_CHECKSUM_ERROR) != 0 : a Master Checksum error has

occurred

void SPACReloadEmitterFIFO (SPACMaster* Card);
SPACReloadEmitterFIFO moves the reading pointer of the Emitter FIFO to the first
word. The FIFO is ready to be read again. This function should be used carefully.

void SPACClearAlarms (SPACMaster* Card)
SPACClearAlarms resets InterruptTimeout and Master checksum error.

 3. 2. The implicit VME Library : vme.h

This library is composed of 5 functions :

void VMEInitialize (SPACMaster* Card);
VMEInitialize(Card) defines a reserved system address to realise the VME accesses.

void VMEWrite (u_short* Address, u_short Value);
VMEWrite (Address, Value) writes Value at the VME address Address.

u_short VMERead (u_short* Address);
VMERead (Address) returns the value read at Address.

28

void VMEWriteBlock (u_short* Address, u_short* Buffer,
u_short Size);

VMEWriteBlock (Address, Buffer, Size) writes the block Buffer of Size
word(s) to the offset Address.

void VMEReadBlock (u_short* Address, u_short* Buffer,
u_short Size);

VMEReadBlock (Address, Buffer, Size) reads a block of Size word(s) from
the base address Address into Buffer.

In order to adapt the SPAC Library to an other platform, 3 functions must be changed:

• void VMEInitialize (SPACMaster* Card)
• void VMEWriteBlock (u_short* Address, u_short* Buffer,

u_short Size)
• void VMEReadBlock (u_short* Address, u_short* Buffer,

u_short Size)

The initialization of the VME requires 3 values :
• VME Base address = BoardAddress << 16
• AddressModifier = 0x39 or 0x3D
• CrateNumber

 3. 3. The constants

The VME offsets of the SPAC master board :
IDENTIFIER = 0x1000
MASTER_STATUS = 0x1200
EMITTER_FIFO = 0x1E00
RECEIVER_FIFO = 0x1800
SPAC_RESET = 0x1000
RUN_ADD = 0x1200
CLEAR_ALARMS = 0x1400
RELOAD_EMITTER_FIFO = 0x1C00

The state called by SPACRun
ON = 1
OFF = 0

The bits of the status register :
MASTER_CHECKSUM_ERROR = 0x0200
TIMEOUT = 0x0100
INTERRUPT = 0x0080
READY_TO_RECEIVE_MESSAGE= 0x0040
READY_TO_SEND_MESSAGE = 0x0020
RECEIVER_FIFO_EMPTY = 0x0010
RECEIVER_FIFO_FULL = 0x0008
EMITTER_FIFO_EMPTY = 0x0004
EMITTER_FIFO_FULL = 0x0002
RUN = 0x0001

29

 3. 4. Glossary

void SPACClearAlarms (SPACMaster* Card);
SPACMaster* SPACDeclareBoard (u_short CrateNumber, u_short AddressModifier, u_short

BoardAddress);
u_short SPACIdentifier (SPACMaster* Card);
u_short SPACMasterStatus (SPACMaster* Card);
u_char* SPACReadFIFO (SPACMaster* Card, u_char Address, u_char SubAddress,

u_short Size);
u_char* SPACReadRAM (SPACMaster* Card, u_char Address, u_char SubAddress,

u_short Size, u_short RAMStartAddress);
u_long SPACReadRegister (SPACMaster* Card, u_char Address, u_char SubAddress,

u_char Size);
void SPACReloadEmitterFIFO (SPACMaster* Card);
void SPACReset (SPACMaster* Card);
void SPACRun (SPACMaster* Card, u_char State);
void SPACWriteFIFO (SPACmaster* Card, u_char Address, u_char SubAddress,

u_char* Data, u_short Size);
void SPACWriteRAM (SPACMaster* Card, u_char Address, u_char SubAddress,

u_char* Data, u_short Size, u_short RAMStartAddress);
void SPACWriteRegister (SPACMaster* Card, u_char Address, u_char SubAddress,

u_long Data, u_short Size);
void VMEInitialize (SPACMaster * Card);
u_short VMERead (SPACMaster *Card, u_short Address);
void VMEReadBlock (SPACMaster *Card, u_short Address, u_short *Buffer,

u_short Size);
void VMEWrite (SPACMaster *Card, u_short Address, u_short Value);
void VMEWriteBlock (SPACMaster *Card, u_short Address, u_short *Buffer,

u_short Size);

 3. 5. A typical program

#include "stdio.h"
#include "stdlib.h"
#include "spac.h"

#define CRATE_NUM 0x00
#define AM 0x39
#define CARD_ADD 0x01
#define PAGE_NUM 15
#define SLAVE_ADD 0x15
#define NTA_SUBADD 0x00
#define FIFO_SUBADD 0x02
#define RAM_SUBADD 0x03

void main()
{

u_long regGet, regPut = 0xBABA;
u_char* fifoPut, fifoGet, ramPut, ramGet;
u_long i, size=0x50;
SPACMaster* Master;
fifoPut = (u_char *) calloc (size, sizeof(u_char));
fifoGet = (u_char *) calloc (size, sizeof(u_char));
ramPut = (u_char *) calloc (size, sizeof(u_char));
ramGet = (u_char *) calloc (size, sizeof(u_char));

30

Master = SPACDeclareBoard (CRATE_NUM, AM, CARD_ADD);
SPACInitialize(Master);

SPACWriteRegister(Master,SLAVE_ADD , NTA_SUBADD, regPut, 2);
regGet = SPACReadRegister(Master, SLAVE_ADD, NTA_SUBADD, 2);
printf("NTA = 0x%X\n", regGet);

for (i=0;i<size;i++)
fifoPut[i]= (u_char) i;

SPACWriteFIFO (Master, SLAVE_ADD, FIFO_SUBADD, fifoPut, size);
fifoGet=SPACReadFIFO (Master, SLAVE_ADD, FIFO_SUBADD, size);

SPACWriteRAM (Master, SLAVE_ADD, RAM_SUBADD, ramPut, size, 0x0000);
printf("ecrite= ");
for (i=0;i<size;i++)
{

ramPut[i]= (u_char) i;
printf("%X ",ramPut[i]);

}
printf("\n");
ramGet=SPACReadRAM (Master, SLAVE_ADD, RAM_SUBADD, size, 0x0000);
printf("relue= ");
for (i=0;i<size;i++)

if (ramPut[i]==ramGet[i])
printf("%X ", ramGet[i]);

else
printf("*%X* ",ramGet[i]);

printf("\n");
}

31

1. DESCRIPTION 2

1.1. Main features 2

1.2. Frame description 4

1.3. About the collisions 7

1.4. Distance conditions 7

1.5. Error protection 7

1.6. System hardware for test beam. 9

1.7. Performance considerations 9
1.7.1. Time to load the front-end boards 9
1.7.2. Time to read the front-end board 10
1.7.3. Time to write and read the front-end board 10

2. HARDWARE USER’S GUIDE 1 1

2.1. The SPAC master board 1 1
2.1.1. The architecture 11
2.1.2. The VME master communications 11

2.2. The SPAC slave installation 1 3
2.2.1. The architecture 14
2.2.2. The Slave SPAC accesses 14
2.2.3. How to build a message 15
2.2.4. How to read a slave reply 16
2.2.5. The slave state machine 16
2.2.6. The timings of the signals between the slave and the host board 18
2.2.7. The implementation of the slave on its host board 22
2.2.8. The objects implementation 23

2.3. Standard connectivity 2 5
2.3.1. BTL technology 25
2.3.2. PECL technology 25

3. SPAC SOFTWARE USER’S GUIDE 2 6

3.1. The SPAC library of functions : spac.h 2 6

3.2. The implicit VME Library : vme.h 2 7

3.3. The constants 2 8

3.4. Glossary 2 9

3.5. A typical program 2 9

