ATLAS Internal Note
LARG-N0-93
24-03-98

SPAC : Serial Protocol for the Atlas Calorimeter
R.Bernier, D.Breton, P.Cros (LAL ORSAY), A.Gara (NEVIS labs).

Version 1.0

January 26" 1998

The am of this protocol is to provide the loading and reading of dl registers and
memories Stted on the calorimeter of the ATLAS detector. It has been studied to be fast
(10Mbit/s), reliable (the error detection rate is high) and cheap. The dave interface fits in an
unique circuit and offers several facilities (SPAC -> VME transcoder to drive a VME bus thus
allowing crate interconnections, JTAG outputs for on board FPGA programming, ...). The
SPAC bus can be PECL/BTL and uni/bidirectionnal. The user’s software is written in C, and
graphic interfaces are running on UNIX and Maclntosh. The SPAC businduces very low noise
and smal power consumption. The protocol is simple and powerful, and alows a immediate
understanding of data transfers with an oscilloscope.

As the possihilities of the SPAC bus seem wide, it could also be used for many other
applications.

SPAC general view

Host board

JTAG

-

8—?|t register I
16-bit register I

SPAC Bus
BTL: 2 or 4 wires
PECL: 4 wires ?%’?'t register I
Optical: 2 wires

=

1. Description

1.1. Main features

The main points of this one-master n-slaves bus are described below. The following
definitions allow any kind of transfer, including as many words as desired, in each direction
between the master and the slaves. The specific adaptations for custom applications are left to
the choice of the users. Nevertheless, some concrete propositions are made concerning the
block mode transfers.

Here are the main features of the SPAC bus::

» The protocol requires only two bidirectionna wires in BTL technology : SCL for
clock/strobe, SDA for data. But it can be used identically with four unidirectionna
wires, in BTL or PECL technology. The master and daves can either be considered as
emitters or as receivers on the line.

» Thereisno problem of master arbitration as this bus is single-mastered by definition.
Nevertheless, to prevent the collisions from different slaves, the protocol forbids the
broadcast reading command, except after a checksum error and only for reading the
slave status register.

» Each dave connected to the bus is addressable by a unique 7 bit address. One address
is reserved for the globa broadcast mode, which alows the addressing of dl of the
slaves. Moreover, 15 other addresses are reserved for local broadcast modes, which
allow the addressing of various groups of slaves, defined by the users. These groups
realise a partition of the totality of the slaves (each dave belongs to one group). The
broadcast modes are only available for write commands coming from the master.

» Thedataawaystravel in the same direction asthe clock. Dataistransfered at 10Mbit/s.
The daves use their local 40MHz clock to generate the 10MHz return data clock, so no
additional clocks are needed. The dave interface clocks are internaly resynchronized
during each transfer from the master.

» The data packets are 9bit long (see below) with aways exactly one missing clock
period between packets. This allows to separate clearly the packets for smplicity
purpose and gives time for data transfer within the receiver (this will help to smplify
the receiver electronics). The 9bit words are tranfered with LSB first (this allows the
checksum to be calculated sequentidly).

* The SDA and SCL lines follow the start and stop conditions of the I2C protocol.
Conversaly, there will be no acknowledge from the dave during a data transfer as this
IS the limiting point for the bus speed. In a general way, al the timings are secure
while several conditions about the board distances are respected. This makes this
system very safe.

» To prevent the collisions, the emitter always checks that the line is not busy before
taking hand on it. Moreover the open collector structure protects the bus against any
short.

» The format of the response to a read request is the same as the format of the request
except for the direction bit in the first word. This means that the data contained in the

two first words is a copy of the one received from the master. This alows crosscheck
and makes the control software more convenient.

» The dave provides a JTAG output in order to program any other FPGA on the host
board.

Format of standard data transfersin the SPAC protocol

Slave address Direction bit

D O B B O O (5 O X

St | First word b
condition - Object adhess _ RGN
_____ O X X XX -
Second word
- Data -
_____ D S S G S S S S o

Dataword (N words)

Checksum Checksum bit

- > ¥ -~

..... X X Xy \

1
Last word S 1

condition

Eormat of the interrupt in the SPAC protocol

SDA and SCL lines pulled to zero

1 1
[1
—|_|'\ i i r ".l -_l'“"ll 75 75 i 3 r r /—|_|7
scL : 0 1 2y © 3% 4 5 6 7 8 9 :
| I—| 0
Start Lnterrupt Stop
condition condition

1.2. Frame description

The 9bit data packets look asfollows...

bit # 8 7 6 5 4 3 2 1 0
1st 0 direction [a d d r e s s]
word

2nd 0 RW [s u b a d d 1]
word

3rd 0 [... d a t a]
word*

4th 0 [d a t a]
word*

0 [.. d a t a]

*

last 1 [c h e c k S u m]
wor d

* . these words are optionnal.

The first word contains the board address and a bit to select the direction (1 for the
master -> dave transfer and O for the other direction). The broadcast mode definition is included
in the address field. The second contains the R/W bit and the internal subaddress.

The number of additional data words is unspecified. The last word will transmit a
checksum which allows the receivers to check for errors. The last bit 8 will be a flag for
recognizing this checksum word.

After any master -> dlave transfer on the line, al the concerned dlaves verify the vaidity
of the checksum byte, and the correct reception of the frame. In case of error, the dlave sends an
interrupt back to the master. An interrupt can also be sent on an externa request, that has to be
managed by the user. The dave status register can inform the master if the interrupt comes from
abus error or an external command.

Theinterrupt signal consists of pulling down both SDA and SCL lines during a normal
9bit command length. The master will then check the dave status register before taking a
decision.

Examples of data transfersin the SPAC protocol

The master loads an 8bit-register within one slave.

Slave address | Direction 0 Subadd R/W 0 Data 0 Checksum p
7 bits lbit=1 7 bits 1bit=0 8 bits 8 bits
The master asks for reading an 8 bit register within one slave.
Slave address | Direction 0 Subadd R/IW 0 Checksum 1]p
7 bits lbit=1 7 bits lbit=1 8 bits
A slave sends the content of an 8 bit register to the master.
Slave address | Direction 0 Subadd R/W 0 Data 0 Checksum p
7 bits 1bit=0 7 bits lbit=1 8 bits 8 bits
The master loads a 16hit-register within one slave.
Slave address | Direction 0 Subadd R/W 0 Data 0 Data 0 Checksum
7 bits lbit=1 7 bits 1bit=0 8 bits 8 bits 8 bits
The master asks for reading a 16 bit register within one dave.
Slave address | Direction 0 Subadd R/W 0 Data 0 Checksum p
7 bits lbit=1 7 bits lbit=1 $02 8 bits
Wordcount
A slave sends the content of a 16 bit register to the master.
Slave address | Direction 0 Subadd R/W 0 Data 0 Data 0 Checksum
7 bits 1bit=0 7 bits 1bit=1 8 bits 8 bits 8 bits

The master loads a 32 bit register within one slave.

s Slave address | Direction 0 Subadd R/W 0 Data 0 Data 0 Checksum 1lp
7 bits 1bit=1 7 bits 1bit=0 8 hits 8 hits 8 hits
4 words
The master asks for reading a 32 bit register in one slave.
S Slave address | Direction 0 Subadd R/W 0 Data 0 Checksum 1lp
7 bits 1bit=1 7 bits lbit=1 $04 8 hits
Wordcount (Most significant byte set to 0 by default)
A slave sends the content of a 32 bit register to the master.
s Slave address | Direction 0 Subadd R/W 0 Data 0 Data 0 Checksum 1lp
7 bits 1bit=0 7 bits lbit=1 8 bits 8 hits 8 bits
4 words
The master loads a FIFO within one dlave.
o | Saveaddress [Direction] | Subadd rRW T, paa [T 1 Daa | Checksum [T
7 bits 1bit=1 7 bits 1bit=0 8 bits 8 hits 8 bits
N words
The master asks for reading a FIFO within one slave.
s Slave address | Direction 0 Subadd R/W 0 Data 0 Data 0 Checksum 1lp
7 bits 1bit=1 7 bits lbit=1 8 bits 8 bits 8 hits
Wordcount
A slave sends the content of a FIFO to the master.
S Slave address | Direction 0 Subadd RIW 0 Data ol | Data 0 Checksum 1 lp
7 bits 1bit=0 7 bits lbit=1 8 hits 8 hits 8 hits
N words
The master loads a N*word RAM within one slave (the NTA has previously been |oaded).
S Slave address | Direction 0 Subadd R/W 0 Data 0 Data 0 Checksum 1lp
7 bits 1bit=1 7 bits 1bit=0 8 hits 8 hits 8 hits
N words
The master asks for reading a RAM in block mode in one slave (the NTA has previously been loaded).
s Slave address | Direction 0 Subadd R/W 0 Data 0 Data 0 Checksum 1 |p
7 bits 1bit=1 7 bits lbit=1 8 hits 8 hits 8 hits
Wordcount
A dlave sends the content of a RAM in block mode to the master.
s Slave address | Direction 0 Subadd R/W 0 Data 0 Data 0 Checksum 1]p
7 bits 1bit=0 7 bits lbit=1 8 hits 8 hits 8 hits
N words
The master |oads a 16hit-register within a group of slaves in broadcast mode.
s Slave address | Direction 0 Subadd R/W 0 Data 0 Data 0 Checksum 1 |p
7 bits 1bit=1 7 bits 1bit=0 8 hits 8 hits 8 hits

defines a broadcast group

The master asks for reading the slave status register of a group of slavesin broadcast mode, after an interrupt.

s Slave address | Direction 0 Subadd RIW 0 Checksum 1]p
7 bits lbit=1 $01 lbit=1 8 bits
defines a broadcast group status register subaddress (no wordcount is required for the NTA and status register)

1.3. About the collisions

Concerning the collisions, all the daves and the master are permanently spying the data
transfers. They can't speak if the line is busy, even for sending an interrupt. The protocol is
intended so that no collision is possible between data transfers. The only possible collison may
be due to an interrupt crossing a master to dave data transfer. This can happen only in two cases
. either there was a checksum error detected by an adressed slave, or an externa interrupt was
generated in adave board. There are two different ways of dealing with such a occurrence :

a) When the master has to emitt, it waits for a back to back propagation delay on the line plus
some extratime before sending a new command. Then it gives time to a possible interrupt due
to acheksum error to arrive and avoids collision.

b) If the master doesn’t wait between commands, or in case of an externa interrupt, an occuring
interrupt may destroy a current data transfer. The master detects the interrupt and immediatly
stopsthe transfer. Parallely, al the daves go back to idle state. Then the source of interruption
is looked for through the broadcast read status command. The stopped transfer will resume
later.

In case of a broadcast write, a checksum error could be seen by several slaves, and
generate the sent of severa interrupts a the same time. Then the open collector structure
prevents the short circuits, and the interrupt message is not modified by superposition.

Moreover, if a broadcast read status is requested, each of the daves will wait for a
different delay (address x 100 ns) after each transfer. So, if the user respects some distance
conditions (less than 10 meters between any couple of slaves), no callision is possible. In this
case, a software delay depending of the number of daves and their addresses should be
calculated for giving time to the master to wait for all dave replies.

1.4. Distance conditions

The maximum distance between any set of two slaves usable with the BTL level bus is
10 meters. The master should not be placed too far of the first dave for impedance adaptation
reasons. In the case of a single master/single dave BTL implementation, the distance could go
up to 30 meters.

The safest way to use the bus over along distance is to use the differentia link with
PECL levelsand transceive the levelsinto BTL around the slave physical location.

1.5. Error protection

Sincethe error rateis low and the protocole allows the master to repeat a message on a
slave request (interrupt), it is no use to correct the errors (a correction device is very heavy, and
expensive). The mgor point isto be able to detect the errors, and flag them.

Typical error sources

Normal frame

_I_l | | | [- _I_SDA

Errorson the data

s n oV .

stop bit wrong data wrong data Start bit start bit
& & & &
start bit stop bit start bit stop bit

Errorson the clock

f I T | . .

P

wror:g? data wrong data 1 more clock

1 more clock

Two typical errors can occur :

* Most of thetimethe errors will generate a frame syntax error, that is to say one more
clock period, or an unexpected dart or stop bit. These errors will generate a frame
syntax error, and most of the time a checksum error. Their detection is systematical. A
frame can't be changed without generating an error, so the error detection rate is
100%. It also should be quoted that any glitch that modifies the data reception
generates aframe syntax error.

» Inafew cases, data can be changed without generating a frame syntax error. This can
only happenif thelineis held at awrong value for at least 25 nson SCL, and 50 ns on
SDA (the glitches are excluded). Then, the checksum error flag should be set to one. A
smple calculation shows that if €, is the error rate per word (that doesn’t generate a
syntax frame error) and n the number of words in the frame, then the probability of
missing adata error is approximatively of :

n = (n-1).n%,%(8n-1)
ex: n=10; g, = 10° err/word (<-> lerr/s) ->n = 10" err/word

A frame syntax error may freeze the bus in an waiting state if no stop bit is seen. A
timeout is programmed in the FPGASs. If one of them is busy for more than the longest message
that can be sent, then the timeout device puts the daves or the master in the idle state, and sets
the timeout flag to one. The timeout waits for 786433 clock periods, i.e. 79 ms (10 Mhz clock).

In conclusion, the chance of missing an error is extremely low, and in no case the dave
or the master can remain blocked in awrong state. The SPAC bus error detection is thus very
reliable.

1.6. System hardware for test beam.

SPAC serid link distribution
for ATLAS test beam

Master

WORKSTATION

ROD VME crate

Repeater
Slaves

4 PECL differential links

4 BTL open-collector links

Front-End crate

For the test beam that will occur &t CERN in 1998, the system will be used with the
following hardware implementation :

- 4 wire busin the front-end crate.

- BTL logic levels.

- one repeater board in the crate which will be connected to the master with 4 differentia

PECL links.

1.7. Performance consider ations

L et us assume that we have to load a configuration of 40 registers and aRAM of 50 kB for each
front-end board, and that we have 15 front-end boardsin the crate.

1.7.1. Time to load the front-end boards

To write a 16-bit register, we have to send a 5 word frame. For al the registers, 200

(40x5) words are necessary. If we load the RAM with 10 kB accesses for example, we have to
load once the NTA (5 words), and 5 times ten kilobyte (10000+3 words).

The whole loading of aboard requires 200+5+50015 = 50220 words. As we can write
all the boards in broadcast mode, and that one word corresponds to one s, the time required to
load the whole crateis: t,;,. = 50.2 ms.

1.7.2.Time to read the front-end board

To read a 16-hit register, we must send aread request (4 words) and read the dave reply
(5words). To read the RAM with 10 kB accesses, we have to load oncethe NTA (5 words), to

send 5 reading requests (5x5 words), and to read 5 replies (5x(10000+3) words). The totd is :
40%(4+5)+5x(5+10003) = 50400 words.

As the broadcast reading is not possible, we have to exchange 15x50400 = 756000
words. Thetimeto read the crateis: t,, = 756.0 ms.

1.7.3.Time to write and read the front-end board
For this operation , we have to exchange 50220+756000 = 806220 words. The time to
writeand read is: t,,,, = 806.2 ms.

10

2. Hardware user’s quide

2.1. The SPAC master board

The SPAC master board is intended to be put in aVME crate, and driven by the VME bus.

2.1.1.The architecture

Architecture of the SPAC bus master

— Status register
Receiver I
FIFO
=N «———
Recelver :
SD & Dat 16
Emitter A —
¢ VME
<>
Checksum - fagg———Jp e |
caculation
<—— Emitter vy
/?\ FIFO |—= Control
internal -
10Mhz Timeout

2.1.2.The VME master communications

11

Master accesses

Infos

Data

Command%

Identifier Object
| rd |10XX|15..0| rd/wr| 15..0[15..0
Master status
| rd [12xXx]15.0 Access type Datafield used

Addressfield used (X=any value)

Emitter FIFO
|rd/wr| 1EXX| 8..0| Board address (swnches)
Receiver FIFO
|rd/wr| 18XX| 8..0| \ 0

Rest | VME data bus
| wr |1oxx| none| 16 15 0
VME bus | VME add bus
Start
| wr |12xx| 0 |

0
|:| VME add mod bus

Clear darms
| wr |14XX| noneI /
Reload emitter FIFO Standard mode (AM = $39 or $3D)
| wr |1CXX| none|

e |dentifier returns A110in hexadecimal (16 bits)
* Master status isa 16 bit register :

2° Master checksum error
2° Timeout

2' Interrupt

2° Ready to receive message
2° Ready to send message
2" Recelver FIFO empty
2° Recaver FIFO full

2° Emitter FIFO empty

2* Emitter FIFO full

2’ Run

Run : one hit register allowing the master to emitt.

Ready to send message is set to oneif :
-Emitter FIFO empty =0 (means that EmitterFIFO is not empty)
-Receiver FIFO full =0 (to prevent data crashing)
- the bit 2 of the last word loaded in the EmitterFIFO is one (last word of a
message)

Ready to receive message is set to oneif :
- Receiver FIFO empty =0
- the bit 2 of the last word loaded in the ReceiverFIFO is one

Interrupt isset to one when an interrupt signa has been transmitted from a slave.
This flag cannot appear with any other datatransfer. No information is loaded
in the ReceiverFIFO.

12

Timeout occurs when a dave has received a deficient message from the master. The
ReceiverFIFO contains a one word message which contains the address of the
complaining slave.

Master checksum error occurs when the master has received a deficient message
from adave. ReceiverFIFO contains the whole message. Its first word is the
(supposed !) address of the complaining slave.

* Reset : resets the board during the access.

* Run : this bit controls the activity of the master. If Run is set to one, the master will
begin to emitt as soon as the internal flag Ready to send message goes to one.

e Clear alarms resets Interrupt, Timeout and Master checksum error. Otherwise, these
flags are never cleared !

» Reload emitter FIFO : movesthe reading pointer of the Emitter FIFO to the first word.
Thus, the FIFO isready to be read again. A very careful use of this function should be
made.

2.2. The SPAC slave installation

The SPAC dave FPGA will be implemented on the user’ s board.

Master board Host board

A\ ritak N
| 4
- Read)
S%A in ———GHedomiHz——
N B LA ==
SDAout L Resetr ¢

8, Data<7..0>
Q- MEbus SPAC seribioutesanie] SPAC + <
master dave 6, Subadd <5..0> A
4 L4
3 FPGAs @ scyout | LFPGA |17, ChipSdect *<7.2>
j | | E §9| T 16, NTA <15..0> N
7 | 4
4‘ B;‘ e nun hﬂ <3 $)>'
4,, JTAG <3..0> o

13

7, SlaveAddress<6..0>
_Af_LchB.LQai(:aSA.ddLﬂSlQZ‘

2.2.1.The architecture

Architecture of the SPAC bus slave

— Status Register
= P — TimeOut _
40 MHz Clk Seagla(gytEnable
e 3 i 3 rite*
Interrupl_pple 7 + Control g’;' ptV
LBA 7 device O Do
(Local Broadcast et 5
Address) 7—1 Subadd
3 7
Slave Address 7 | b > l/— Decoder 7 ChipSelect*

-

| 16
. .
Checksum CalculationfF—-$ ¢—D— WordCount Register
Decoder f& - BYte NUMber
| <
SCLin -
- r) 4
SDAIn Data Register - p—| JTAGRegister F7f#=TTAG
9 bits bidirectionnal
- SCL out

I_'_. - SDA out

2.2.2.The Slave SPAC accesses

* Address defines a dave seen from the SPAC bus. Address is generated with a 7-bit
switche on the host board. The address<6..0> range isnot wholly available :

7F
free
10
locd OF
broadcast .
cdl 01
global broadcast call | 00

* Local broadcast address defines the broadcast group of a slave. 15 different groups
can be chosen, using a 4-bit switch on the host board.

14

e Subadd defines an object that the dave corresponding to address can access. The
subadd array is structured as shown :

3F

free
03
JTAG 02
status register 01
NTA 00

2.2.3.How to build a message

The genera form of the message to transfer through VME is the following one (remember that
the checksum word exists in the data transfers through the SPAC bus, but is not transfered
through VME) :

bit # 8 7 6 5 4 3 2 1 0
1st 0 1 a d d r e S S
word (direction)
2nd O(1ifno RW S u d a d d r
word* data)
3rd 0 d a t a
word*
4th 0 d a t a
word*
... 0 d a t a
last 1 d a t a
word

*:optionnal words

e Thedirection bitissetto 1 for amaster to save transfer, so the user will always give
the value 1 to direction.

* R/W issettol for areading request, O for awriting one.

The transfer is always big endian, that is to say that the first byte sent isthe less significant, and
the last one the most, in a 16 to 32-hit register. This rule applies for the NTA (16 bits), the
wordcount (16 bits), and any register bigger than 1 byte.

In case of awrite command (R/W=0), the datawill be sent to the object pointed by subadd .

In case of aread command (R/W=1), the data will be sent to the 16-bit wordcount register. As
the transfer is big endian, and the wordcount is set to $0001 before any loading, it is possible to
send only one data word in a read command, if the wordcount is below $00FF. Indeed, the
most significant byte of the wordcount will be O by default.

Two other specia cases should be noticed. In acommand for NTA reading, it is no use to load
avalue into the wordcount. The size of the NTA register (2 bytes) isinternaly known. And in a

command for FIFO reading, the user can ether load a vaue (n<FFFF) to the wordcount, in

order to read n bytes from the FIFO, or not load any data. Then, the whole FIFO will be read
(until reception of a FIFO empty flag).

15

2.2.4.How to read a slave reply

The message brought back through VME appears as below. The slaves can only reply to the
master, so direction = 0, and R/W =1. Address contains the address of the dave which is
talking. Subadd gives the address of the object being read.

bit # 8 7 6 5 4 3 2 1 0
1st 0 0 a d d r e S S
word (direction)

2nd 0 1 S u b a d d r
word* (R/W)

3rd 0 d a t a

word*

4th 0 d a t a

word*

0 d a t a

*

last 1 d a t a

word

*:optionnal words

In case of an interrupt, the message is empty, but the interrupt flag of the master status register
issetto 1.

2.2.5.The dave state machine

The dave is composed of one module, which is integrated within an FPGA. It can
address FIFOs, RAMs, registers up to 32 bits and other memories.

Whatever the type of your memory, the slave generates 2 buses, which will be used or not :
- Byte number which gives the number of the byte of a pointed register
- Next address register (NTA) which gives the RAM address pointed

In case of aread command, the number of bytes to read is loaded in an internal 16-bit
register, Wordcount. This register is special because it doesn’'t have any address, iswritten by a
special protocol, and cannot be read (which anyway is no use). $0001 is loaded by default.

In case of a RAM access, data will be sent to the internal address loaded in the 16-bit
next transfer addressregister (NTA). Any access to a RAM (read & write) implies a previous
loading of the board's NTA.

16

Seen from the dave, the general protocol is desribed below:

Slave actions

write

received

(NTA dready loaded in case of a RAM access)
byte number = 1

L oop:
next data byte -> memory
byte-number incremented (1 to 4)
NTA incremented (0 to $FFFF)
goto Loop

read

received

no data byte -> (wordcount = 1 by default)
or 1 data byte -> wordcount (= 1 to $FF)
or 2 data bytes -> wordcount (= 1 to $FFFF)

replied

(NTA aready loaded in case of aRAM access)
byte number = 1

L oop:
memory -> next bytes read
byte-number incremented (1 to 4)
NTA incremented (0 to $FFFF)
Wordcount decremented
Loop until Wordcount = 0

memory
pointed with subadd

17

2.2.6.The timings of the signals between the slave and the host

board
8-bit register writing
SDA —I [istword | 2¢word | [daaword | | checksumword |
Data<7..0> Hi Z % Hi z
Write I_l
Read
Subadd<5..0> 0x00 [0x02 [0x00
ChipSelect<7..2> OX7F [0x7D | OX7F
NTA<15.0> 0Xx0000
ByteNumber<3..0> [[0x1
SRS O .U . SR . . ot R L3
SDA —| I 1st word I 2st word I I dataword \I I dataword J | checksum word |_
Data<7..0> Hi Z % Hi Z % Hi z
Write I_l |_|
Read
Subadd<5..0> 0x00 | 0x03 | oxo0
ChipSelect<7..2> OX7F | O0x7B [ox7F
NTA<15.0> 0X0000 | oxoo01 [0X0002
ByteNumber<3.,0> oxL [ox2 | x4 [Loxt
SDA —l | 1st word | 2st word | | dataword \| { { | dataword \| | checksum word| |_
/
Data<7..0> Hi Z Hi Z % Hi Z
Write |_| |_|
Read
[L
Subadd<5..0> 0x00 | 0x05 I] 0x05 [oxoo
2L4L
ChipSelect<7..2> OX7F | OX6F [OX6F [ox7F
yrri
NTA<15.0> 0x0000 ox0000 |J] oxoo04 [oxoo0s
ByteNumber<3..0> ox1 ox1 1] 0x8 [0x8 [ox1
77
"
SDA —l | 1st word I 2st word I | dataword \I { { | dataword \I I checksum wordl l_
7
Data<7..0> Hi Z Hi Z % Hi Z
Write I_I I_I
R%d L L
Subadd<5..0> 0x00 [oxic] ox1C [oxo0
ChipSelect<7..2> OXTF [o] OX7F [ox7F
pPraa
NTA<15..0> 0Xx0000 0X0000 [[l oxerpa | oxerDB
2EL
ByteNumber<3..0> Ox1 ox1 11 0x8 [0x8 [ox1

18

NTA register writing

SDA —| [iswod | [2fword | [ddawod | [detaword | [checksumword] l_

Data<7..0> Hi Z a Hi Z a Hi Z

Wite I I

Read

Subadd<5..0> 0x00 | 0x00 [oxo0

ChipSelect<7..2> OX7F [Ox7F [ox7F

NTA<15..0> 0x0000 [0x000C [0x9D0C

ByteNumber<3..0> ox1 | 0x2 | x4 I Ox1
RAM writing (NTA already loaded)

SDA][iswod | [2swod | [daaword | ({ [daaword | [checksimword [

Data<7..0> HiZ Hi Z Hi Z

Write I_I I_I

Read

Subadd<5..0> 0x00 [0x07 ﬁ 0x07 [oxo0

ChipSelect<7..2> OX7F [OX3F ']']' OX3F [ox7F

NTA<15..0> 0x9DOC 0x9DOC ”| OX9DFF [OX9E00

ByteNumber<3..0> ox1 0x1 l" ’Il 0x8 | 0x8 [ox1

Vo4

SDA —l [istword | [2stword | [checksumword | |

Data<7..0> Hi z

Write

Read

Subadd<5..0> 0x00 [0x02

ChipSelect<7..2> OX7F | 0x7D

NTA<15..0> 0x0000

ByteNumber<3..0> 0x01

SDA][astword | [2stword | [, dataword | [checksumword] |

Data<7.0> Y Hz A Hz Y Hz Y Hiz

Write

Read [

Subadd<5..0> 0x02 [0x00

ChipSelect<7..2> 0x7D [OX7F

NTA<15..0> 0x0000

ByteNumber<3..0> 0x01 | 0x01

19

16-bit register reading command

SDA —| [istword | [2dword | [detaword(0x02)] [dataword (0x00) [checksumword | [_
Data<7..0> Hi Z a Hi Z a Hi Z
Write
Read
Subadd<5..0> 0x00 | 0x04
ChipSelect<7..2> OX7F | 0x77
NTA<15..0> 0x0000
ByteNumber<3..0> Ox1
16-bit register reading execution
SDA —l | 1st word | | 2st word | | dataword | |/ dataword | | checksum word | |_
paa<7.0> Y Hi Z % Hi Z % Hi Z A Hi Z 7, Hi Z
Write
Read |_| |_l
Subadd<5..0> 0x04 | 0x00
ChipSedlect<7..2> 0x77 | OX7F
NTA<15..0> 0x0001 | 0x0001 I 0x0002
ByteNumber<3..0> Ox1 | 0x2 | Ox4 | Ox1
32-bit register reading command
SDA —l | istword | | 2stword | [dataword(0x04)| | dataword (0x00) [checksum word| r
Data<7..0> Hi Z Vi Hi Z Vi Hi Z
Write
Read
Subadd<5..0> 0x00 | 0x06
ChipSelect<7..2> OX7F [OX5F
NTA<15..0> 0x0000
ByteNumber<3..0> Ox1
SDA —l | 1st word | | 2st word | dataword | / dataword | | checksum word | |_
P4
Daa<7.0> Hi Z Z Hi Z Hi Z Hi Z % Hi Z
Write
Read 1]]
Subadd<..0> 0x06 I 0x06 [oxo0
ChipSelect<7..2> OX5F |/ OX5F [ox7F
241
NTA<15.0> 0x0000 | oxooo1 [/] 0x0004
ZLL
ByteNumber<3..0> 0x1 | 0x2 Il 0x8 [ox1
77

20

FIFO reading command

SDA —I [istwod | [2dfword | [detaword(WC)| [dataword(WC)| [checksum word] r
Data<7..0> Hi Z z Hi Z z Hi Z
Write
Read
Subadd<5..0> 0x00 I 0x07
ChipSelect<7..2> OX7F [Ox3F
NTA<15..0> 0x51C2
ByteNumber<3..0> Ox1

EIFO reading execution
SDA [aswod | [2stword | [, dataword | (,/ [daaword | [checksmword] [

77
Data<7..0> E Hi Z Z| Hi Z X Hi Z X Hi Z % Hi Z
Write
=]]
Subadd<5..0> 0x07 /! 0x07 [oxo0
ChipSelect<7..2> OX3F ']l ,1 OX3F [ox7F
NTA<15..0> 0x51C2 [0x51C3 ’m 0x54D2
ByteNumber<3..0> Ox1 [0x2 l]’ f'| 0x8 [ox1
77

NTA register reading command
SDA —| | 1st word I | 2st word I I checksum word I |
Data<7..0> Hi Z
Write
Read
Subagdd<5..0> 0x00 | 0x00
ChipSelect<7..2> Ox7F | Ox7F
NTA<15..0> Ox41F6
ByteNumber<3..0> 0x1

NTA register reading execution
SDA —l [istwod | | 2swod | | dataword(F6)| | dataword(4l)| | checksumword | |_
Data<7.0> A Hi Z Z| Hi Z Hi Z Hi Z 7 Hi Z
Write
=]]
Subadd<5..0> 0x00 | 0x00
ChipSelect<7..2> OX7F [ox7F
NTA<15..0> 0x41F6
ByteNumber<3..0> Ox1 0x2 Ox4 | Ox1

21

RAM reading command (NTA already loaded)

SDA —I [Istword [2stword | [dataword(WC)] [dataword(WC)] [checksumword] r
Data<7..0> Hi Z Hi Z Hi Z
Write L| |.|.
Read
Subadd<5..0> 0x00 I 0x08
ChipSelect<7..2> OX7F [OX7F
NTA<15..0> 0x18F6
ByteNumber<3..0> Ox1
RAM reading execution
SDA 1 [1stword [ostword | [, daaword | (/ [daaword | [checksmword] [

Data<7..0> E Hi Z

P

77
Hi Z g Hi Z

Write
=]
Subadd<5..0> 0x08 /! 0x08 [oxo0
ChipSelect<7..2> OX7F ']l / OX7F [ox7F
NTA<15..0> 0x18F6 [Ox18F7 ’m OXFFFF
ByteNumber<3..0> Ox1 [0x2 l]’ f'| 0x8 [ox0
77

e O IO DS
Internal read S R ",
Data<7..0> Hi Z X_t Dataword & X Hi Z
Write \ /
Read >

Setup time > 80ns Hold time > 40 ns

Data<7..0> HiZ X DataWord X HiZ
Write
Read \ /
Internal write -!’ -------------------- "

2.2.7.The implementation of the slave on its host board

Seethespac_kit. ps fileontheweb.

22

2.2.8.The objects implementation

8-bit register implementation

Data 8 8-bit register
I
Write*
Subadd 6
6 =
/
Register address
Reaj* | |
Subadd 6
_ _ ChipSelect *< i >
6 = = TO02,7]
Register gdreﬁs:i
16-bit register implementation
o ;
Register i
Data 8 ! Reg16<7..0>
14
byteO
Reg16<15..8> l\
) bytel
Write* -
] bytel
Subadd 9

Register address

Read* [l

23

32-bit register implementation

vdhdhdh

Reg16<7..0>

byteO

Reg16<15..8>

bytel

Reg16<23..16>

Reg16<31..24>

Data 8
4
byte0
bytel
byte2
byte3
Write* yt_
ChipSelect *<i >
TOZ 7]
Read*
FIFO implementation
Data
Write*
Subadd 6
6
Register eress
Read*

24

used if FIFO Output is not required

RAM implementation

RAM
Data 8 RAM Output
7 D Q
NTA 1? Address
Write*
>WF
Subadd 6
6 =

Register gdr&ss

Read* The RAM output buffer can aso be

used if RAM Output is not required

2.3. Standard connectivity

2.3.1.BTL technology
 For the bidirectiona solution, the connector typeisadifferentia Lemo:

A SDA
B SCL

A shielded 2 wire cable is required.

 For the unidirectionnal bus, a 10 pin connector is used (male HE-10, 2*5 pins) :

gnd 1 2 master to Save SDA
gnd 3 4 master to dave SCL
gnd 5 6 gnd
dave to master SCL 7 8 gnd
daveto master SDA 9 10 gnd

A flat 10 wire cableisrequired.

2.3.2.PECL technology
* A PECL link can only be unidirectionna. A 10 pin connector is used (the same as

above) :
master to dave SDA - 1 2 master to dave SDA +
master to dave SCL - 3 4 master to dave SCL +
daveto master SDA - 5 6 daveto master SDA +
daveto master SCL - 7 8 daveto master SCL +
gnd 9 10 gnd

A 10 wire cable, with twisted pairsis required.

25

3. SPAC software user’s gquide

3.1. The SPAC library of functions : spac. h

The SPAC library isaset of functions to manage the communications of the SPAC bus.
Thislibrary allows asimple use of the SPAC bus, with functions optimized for speed. All the
usual applications of the SPAC bus can be managed by the library. However, the vme library
may be useful for special applications (debugging,...). In any case, the vme library is used by
the SPAC library, and has to be adapted to the VME controller. Conversely, the SPAC library is
universal.

The type SPACMaster is a transparent structure that is wholly defined
SPACDeclareBoard().

SPACVast er* SPACDecl areBoard(u_short CrateNunber, u_short
Addr essModi fier, u_short BoardAddress);
SPACDecl| ar eBoar d defines and initializes a SPAC board. Cr at eNunber depends on
the VME crate. The accepted values of AddressMdifier ae 0x39 and Ox3D.
Boar dAddr ess is the VME address of the Master card. The returned pointer ought to be
declared as SPACMast er * becauseit pointsto a structure. run is set to one.

void SPACW i teRegister (SPACVaster* Card, u_char Address,
u_char SubAddress, u_long Data, u_char Size);
SPACW it eRegi ster writes Data in the Size byte(s) register pointed by
SubAddr ess, on the dave board Addr ess, and from Car d. Si ze must be 1, 2, 3 or 4.
Addr ess set to 0 produces a broadcast write.

u_l ong SPACReadRegi ster (SPACVaster* Card, u_char Address,
u_char SubAddress, u_char Size);
SPACReadRegi st er returns the vaue of the Size byte(s) register pointed by
SubAddr ess on the dave board Addr ess, and from Card. Si ze must be 1, 2, 3 or 4.
This function does not support broadcast, so O isnot avalid value for Addr ess.

void SPACWIiteFI FO (SPACraster* Card, wu_char Address,
u_char SubAddress, u char* Data, u_short Size);
SPACW i t eFI FO writes Si ze byte(s) of the buffer Data in the FIFO pointed by
SubAddr ess, on the dave board Addr ess, and from Car d. Size must be different to O.
Addr ess set to 0 produces a broadcast write.

u_char* SPACReadFl FO (SPACMaster* Card, u_char Address,
u_char SubAddress, u_short Size);
SPACReadFI FO r eturns an alocated buffer, resulting of the Si ze byte(s) read from the
FIFO pointed by SubAddr ess, on the dave board Addr ess, and from Car d. Size must be
different to 0. This function does not support a broadcast read,so O is a forbidden address.

voi d SPACWIiteRAM (SPACMVaster* Card, u_char Address, u_char
SubAddr ess, u_char* Dat a, u_short Si ze, u_short
RANEGt ar t Addr ess) ;
SPACW i t eRAM writes Si ze byte(s) of the buffer Dat a from RANVSt art Addr ess to
RANSt ar t Addr ess+Si ze- 1 in the RAM pointed by SubAddr ess, on the dave board
Addr ess, and from Car d. Size must be different to 0. Address set to O produces a broadcast
write.

26

u char* SPACReadRAM (SPACVaster* Card, wu_char Address,
u_char SubAddress, u_short Size, u_short RAMStart Address);
SPACReadRAMreturns an allocated buffer, resulting of the Si ze byte(s) read from the RAM
pointed by SubAddress, from the RAM address RAMStart Address to
RANBt ar t Addr ess+Si ze- 1, onthedaveboard Addr ess, and from Car d. Size must be

different to 0. This function does not support a broadcast read,so O is a forbidden address.

voi d SPACRun (SPACVaster* Card, u_char State);
SPACRun modifies the run bit of Car d. St at e can be:

* OFF : to stop the emission.
e ON: toalow the emission.

voi d SPACReset (SPACMaster* Card);
SPACReset resatsthe Car d.

u_short SPACIdentifier (SPACMaster* Card);
SPACI denti fi er returnstheidentifier of Car d. Itsvalue: 0xA110.

u_char SPACMast er St atus (SPACMVaster* Card);
SPACMast er St at us returns the Master status value. The result may be used as follow :

o (result & RUN) !'=0: the master can emitt.

o (result & EMITTER_FIFO _FULL) !'=0: Emitter FIFO isfull

o (result & EMITTER_FIFO_EMPTY) !=0: Emitter FIFO isempty

o (result & RECEIVER _FIFO_FULL) !=0: Receiver FIFO isfull

e (result & RECEIVER FIFO EMPTY) I=0: Recever FIFO is empty

¢ (result & READY_TO_SEND) !=0: the Master isready to send

* (result & READY_TO_ RECEIVE) !=0: the Master isready to receive

e (result & INTERRUPT) !=0 :aninterrupt signal has been transmitted from adave
e (result & TIMEOUT) !=0: aTimeout has occurred

e (result & MASTER CHECKSUM_ERROR) != 0 : a Master Checksum error has
occurred

voi d SPACRel oadEm tter FI FO (SPACMast er* Card);
SPACRel oadEmi tt er FI FO moves the reading pointer of the Emitter FIFO to the first
word. The FIFO isready to be read again. This function should be used carefully.

voi d SPACCI ear Al arns (SPACMVast er* Card)
SPACCI ear Al ar ns resets InterruptTimeout and Master checksum error.

3.2. Theimplicit VME Library : vime. h

Thislibrary is composed of 5 functions :

void VMEInitialize (SPACMaster* Card);
VMEI ni tialize(Card) definesareserved system address to realise the VME accesses.

void VMEWite (u_short* Address, u_short Val ue);
VMEW i te (Address, Val ue) writesVal ue a the VME address Addr ess.

u_short VMERead (u_short* Address);
VMERead ((Address) returnsthevalueread at Addr ess.

27

void VMEW iteBlock (u_short* Address, u_short* Buffer,
u_short Size);
VMEW i t eBl ock (Address, Buffer, Size) writestheblock Buffer of Size
word(s) to the offset Addr ess.

void VMEReadBl ock (u_short* Address, u_short* Buffer,
u_short Size);
VMEReadBIl ock (Address, Buffer, Size) readsablock of Si ze word(s) from
the base address Addr ess into Buf f er .

In order to adapt the SPAC Library to an other platform, 3 functions must be changed:

e void VMEInitialize (SPACVaster* Card)

« void VMEW IiteBlock (u_short* Address, u_short* Buffer,
u_short Size)

« void VMEReadBl ock (u_short* Address, u_short* Buffer,
u_short Size)

Theinitialization of the VME requires 3 values :
 VME Base address = BoardAddress << 16
e AddressModifier = 0x39 or 0x3D
e CrateNumber

3.3. The constants

The VME offsets of the SPAC master board :

IDENTIFIER = 0x1000
MASTER_STATUS = 0x1200
EMITTER_FIFO = 0x1E0O0
RECEIVER _FHFO = 0x1800
SPAC_RESET = 0x1000
RUN_ADD = 0x1200
CLEAR_ ALARMS = 0x1400
RELOAD EMITTER HFO = 0x1CO00
The state called by SPACRun

ON =1

OFF =0

The bits of the status register :
MASTER_CHECKSUM_ERROR = 0x0200
TIMEOUT = 0x0100
INTERRUPT = 0x0080

READY TO RECEIVE MESSAGE= 0x0040
READY_TO SEND MESSAGE = 0x0020

RECEIVER_FIFO_EMPTY = 0x0010
RECEIVER_FIFO_FULL = 0x0008
EMITTER_HFO_EMPTY = 0x0004
EMITTER_FIFO_FULL = 0x0002
RUN = 0x0001

28

3.4.

Glossary

void SPACCIlear Alarms
SPACMaster* SPACDeclareBoard
u_short SPACIdentifier
u_short SPACMaster Status
u_char* SPACReadFIFO
u_char* SPACReadRAM
u_long SPACReadRegister
void SPACReloadEmitter FIFO
void SPACReset
void SPACRunN
void SPACWTriteFIFO
void SPACWriteRAM
void SPACWT riteRegister
void VMElnitialize
u_short VMERead
void VMEReadBlock
void VMEWTrite
void VMEWTriteBlock
3.5._ A typical program
#include "stdio.h"
#i ncl ude "stdlib.h"
#i ncl ude "spac. h"
#def i ne CRATE_NUM 0x00
#defi ne AM 0x39
#defi ne CARD_ADD 0x01
#def i ne PAGE_NUM 15
#def i ne SLAVE_ADD 0x15
#def i ne NTA SUBADD 0x00
#def i ne FI FO_SUBADD 0x02
#def i ne RAM SUBADD 0x03
voi d main()
{

(SPACMaster* Card);

(u_short CrateNumber, u_short AddressModifier, u_short
BoardAddress);

(SPACMaster* Card);

(SPACMaster* Card);

(SPACMaster* Card, u_char Address, u char SubAddress,
u_short Size);

(SPACMaster* Card, u_char Address, u char SubAddress,
u_short Size, u_short RAM StartAddress);

(SPACMaster* Card, u_char Address, u char SubAddress,
u_char Size);

(SPACMaster* Card);

(SPACMaster* Card);

(SPACMaster* Card, u_char State);

(SPACmaster* Card, u_char Address, u char SubAddress,
u_char* Data, u_short Size);

(SPACMaster* Card, u_char Address, u char SubAddress,
u_char* Data, u_short Size, u_short RAM StartAddress);
(SPACMaster* Card, u_char Address, u char SubAddress,
u_long Data, u_short Size);

(SPACMaster * Card);

(SPACMaster *Card, u_short Address);

(SPACMaster *Card, u_short Address, u_short *Buffer,
u_short Size);

(SPACMaster *Card, u_short Address, u_short Value);
(SPACMaster *Card, u_short Address, u_short *Buffer,
u_short Size);

u_l ong regGet, regPut = OxBABA;

u char* fifoPut, fifoGet, ranmPut, ranGet;
u_long i, size=0x50;
SPACMast er* Master;
fifoPut = (u_char *) calloc (size, sizeof(u_char));

fifoGet
r anPut
r anet

(u_char *) calloc (size, sizeof(u_char));
(u_char *) calloc (size, sizeof(u_char));
(u_char *) calloc (size, sizeof(u_char));

29

Mast er = SPACDecl areBoard (CRATE NUM AM CARD ADD);
SPACInitialize(Master);

SPACW i t eRegi st er (Mast er, SLAVE_ADD , NTA SUBADD, regPut, 2);
regGet = SPACReadRegi ster(Master, SLAVE ADD, NTA SUBADD, 2);
printf("NTA = 0x%\ n", regGet);

for (i=0;i<size;i++)

fifoPut[i]= (u_char) i;
SPACW it eFl FO (Master, SLAVE ADD, FIFO SUBADD, fifoPut, size);
fifoGet =SPACReadFI FO (Master, SLAVE ADD, FI FO SUBADD, size);

SPACW it eRAM (Master, SLAVE ADD, RAM SUBADD, ranPut, size, 0x0000);
printf("ecrite=");
for (i=0;i<size;i++)
{
ramPut[i]= (u_char) i;
printf("9X ", ranPut[i]);

}
printf("\n");
r antet =SPACReadRAM (Mast er, SLAVE _ADD, RAM SUBADD, size, 0x0000);
printf("relue=");
for (i=0;i<size;i++)
if (ranmPut[i]==rantGet[i])
printf("o ", ranGet[i]);
el se
printf("*9%* ", ranGet[i]);
printf("\n");

30

1. DESCRIPTION

1.1. Main features

1.2. Frame description

1.3. About the collisions

1.4. Distance conditions

1.5. Error protection

1.6. System hardware for test beam.

1.7. Performance considerations
1.7.1. Timeto load the front-end boards

1.7.2. Time to read the front-end board
1.7.3. Time to write and read the front-end board

HARDWARE USER’S GUIDE

2.1. The SPAC master board
2.1.1. The architecture
2.1.2. The VME master communications

2.2. The SPAC sdlave installation
2.2.1. The architecture
2.2.2. The Slave SPAC accesses
2.2.3. How to build a message
2.2.4. How to read aslave reply
2.2.5. The dlave state machine
2.2.6. The timings of the signals between the slave and the host board
2.2.7. The implementation of the slave on its host board
2.2.8. The objects implementation

2.3. Standard connectivity

2.3.1. BTL technology
2.3.2. PECL technology

SPAC SOFTWARE USER’S GUIDE
3.1. The SPAC library of functions : spac.h
3.2. The implicit VME Library : vmeh
3.3. The constants
3.4. Glossary

3.5. A typical program

31

©

10
10

11

11
11
11

13
14
14
15
16
16
18
22
23

25

25
25

26
26
27
28
29

29

