Physics 214 INTRODUCTION TO LABORATORY ELECTRONICS Lecture 1

Topics:	Electrical	quantities,	Ohms la	aw, simple	e DC circuit,	Power, Meters
----------------	------------	-------------	---------	------------	---------------	---------------

Electrical Quantity	DC symbol	AC symbol	SI Unit
Charge	Q	q(t)	Coulomb (C)
Current	Ι	i(t)	Ampere (A)
Voltage	V	<i>v(t)</i>	Volt (V)
Resistance	R	R	$Ohm(\Omega)$
Power	Р	Р	Watt (W)

Charge:

Electrical charge is a fundamental property of a body, like its mass. Smallest isolated charge is charge of electron (-) or proton(+),

1 Coulomb equivalent to charge on 6.25×10^{18} electrons

 $F \propto \frac{q_1 q_2}{r^2}$ proportionality constant = $\frac{1}{4\pi \epsilon_0}$

 $\epsilon_0 = 8.8542 \times 10^{-19} \text{ C}^2 / \text{ N} \cdot \text{m}^2$ permittivity of free space

Current:

Amount of charge passing through a given area per unit time i.e. time rate of charge of charge at a point,

1 Amp = 1 C/s

mA (milliamp)	10 ⁻³ Amps
μA (microamp)	10 ⁻⁶ Amps
nA (nanoamp)	10 ⁻⁹ Amps
pA (picoamp)	10^{-12} Amps

Current direction given by direction of motion of *positive* charges

(in metals and semiconductors the charge carriers are, in fact, electrons so direction of charge carriers is not the direction of current)

Potential Difference (Voltage or Voltage Drop):

Electrical forces introduce differences in potential energy for charged bodies at different positions

The difference in potential energy for a unit charge is the POTENTIAL DIFFERENCE

SI unit for energy is Joule = Newton-metre, SI unit for potential difference is VOLT 1 Volt = 1 Joule/Coulomb

Voltage is always a measure of difference in potentials:

there is no absolute voltage, only voltage differences, usually referenced to eg potential of earth (ground)

$$V_{ab} = V_a - V_b$$

Resistance:

electrons moving in materials produce current (conduction electrons) but electrons collide with the atomic lattice of the material. The average distance between collisions in the material is characterized by a bulk property of the material known as *resistivity* (ρ).

A material of length L and cross sectional area A has resistance:

$$R = \rho L / A$$

SI unit: Ohm (Ω)

eg 0.032 inch diameter copper wire has resistance of 11.3 Ω /1000 feet.

(i.e. 20 gauge copper wire has resistance of $0.34 \text{ m}\Omega/\text{m}$)

