
P214 Midterm Practice Problem SOLUTIONS 
(note that these are a little bit harder than the problems on the actual midterm 

will be, but are very good practice for them) 
 
 
1.  Show that, if you have a 15 volt battery, it is not possible to exceed the power rating of a ¼ 

watt resistor of resistance greater than 1 kΩ (no matter how you connect it). 
 
If you directly connect up a 1 kΩ resistor to a 15 volt battery (with, at most, only wires with 
negligible resistance to make the connections), the power dissipated in the resistor will be P = 
V2/R = 225/1000 = just a bit under ¼.  Any alternative way of connecting the resistor to the 
battery (using simple elements such as other resistors, capacitors, inductors, wires, etc) would 
only cause the power dissipated in the resistor to be less than that value, and increasing the 
resistance of the resistor above 1 kΩ would also only decrease the dissipated power.  Thus 
there is no way to exceed the power rating of a ¼ watt resistor of resistance greater than 1 kΩ 
with a 15 volt battery. 
 
2.  (A quite hard [especially parts b) – d)] but good problem!)  Let’s say that, instead of a 

voltage source (like a battery) or a constant-current source, we have a constant-power 
source.  A constant-power source will do whatever it can to make sure that the voltage 
across its terminals, multiplied by the current it provides, is kept at a constant value (say, for 
example, 10 watts, or alternatively 100 milliwatts, etc).  We know that the symbols for a 
voltage source and for a current source are as follows: 

 
           Voltage source:         Current source: 
 
 Let us let the symbol for a constant-power source be: 
 
           Power source:   
 
 And let’s say we have the following circuit: 
       VP 
        I   R1 
           P                             VA 
 
          I1   R2  I2     Rload 
 
 

a) Find the voltage VA, as a function of P, R1, R2, and Rload. 
 
I’ve drawn in additional variables I, I1, I2 (representing currents) and VP (the voltage 
coming out of the power source) in the drawing above.  We know 5 relationships 
between all these variables: 
 1)  I = I1 + I2  (from Kirchhoff’s node law) 
 2)  VP – VA = IR1 (from Ohm’s law, on resistor R1) 
 3)  VA = I1R2  (from Ohm’s law, on resistor R2) 



 4)  VA = I2Rload  (from Ohm’s law, on resistor Rload) 
 5)  P = IVP  (the definition of our constant power source) 
We need to solve those 5 equations in 5 variables, so that we’re left with VA in terms of 
P, R1, R2, and Rload.  That’s not as hard as it might seem.  Plugging 3) and 4) into 
equation 1), we get I = VA/R2 + VA/Rload.  Call that equation 1’).  Then plugging in 
equation 5) for I into 1’) gives us P/VP = VA/R2 + VA/Rload.  Call that equation 5’).  From 
equation 2), we know that VP = VA + IR1, and plugging equation 1’) for I into that gives 
us that VP = VA + (VA/R2 + VA/Rload)R1 = VA(1 + R1/R2 + R1/Rload).  Now plugging that 
into equation 5’) gives us P = VA

2(1 + R1/R2 + R1/Rload)(1/R2 + 1/Rload), and thus VA = 
[P/{(1 + R1/R2 + R1/Rload)(1/R2 + 1/Rload)}]½.  
 

b) If we decide to “formally” define the Thevenin equivalent voltage VEQ, and Thevenin 
equivalent resistance REQ, as: 1) VEQ ≡  VA’ = VA in both of the circuits below and above 
respectively when taking the limit that Rload → ∞, and 2) REQ ≡  Rload((VEQ/VA) – 1)  = 
Rload((VEQ/VA’) – 1) in both of the circuits above and below respectively when taking the 
limit that Rload << REQ, then find the Thevenin equivalents VEQ and REQ as functions of 
P, R1, and R2. 

                 VA’ 
           REQ                 
 
          VEQ                  Rload 
 
 

To find VEQ, just take the limit Rload → ∞ in the formula we calculated for VA above in 
part a).  One obtains VEQ = [P/{(1 + R1/R2)(1/R2)}]½ = R2(P/(R1+R2))½.  To find REQ, 
note that Rload((VEQ/VA) – 1)  = Rload[R2

2{(1 + R1/R2 + R1/Rload)(1/R2 + 1/Rload)}/ 
(R1+R2)]½ – Rload.  In the limit that Rload is small, this just equals 
Rload[R2

2{(R1/Rload)(1/Rload)}/(R1+R2)]½ = [R2
2R1/(R1+R2)]½ = R2[R1/(R1+R2)]½. 

 
c) If we decide to “formally” define the Norton equivalent current IEQ, and Norton 

equivalent resistance REQ, as: 1) IEQ ≡  VA’/Rload = VA/Rload in both of the circuits below 
and above respectively when taking the limit that Rload << REQ, and 2) REQ ≡  VA/IEQ = 
VA’/IEQ in both of the circuits above and below respectively when taking the limit that 
Rload → ∞, then find the Norton equivalents IEQ and REQ as functions of P, R1, and R2. 

VA’ 
       
       IEQ         REQ               Rload 
 
 
 

To find IEQ, do similarly to what we did for the Thevenin REQ in part b) above.  IEQ = 
VA/Rload = [P/{(1 + R1/R2 + R1/Rload)(1/R2 + 1/Rload)}]½ / Rload.  In the limit that Rload is 
small, this equals [P/{(R1/Rload)(1/Rload)}]½ / Rload = (P/R1)½.  To find the Norton REQ, 
we have that REQ = VA/IEQ = [R1/{(1 + R1/R2 + R1/Rload)(1/R2 + 1/Rload)}]½.  In the limit 
that Rload → ∞, this becomes [R1/{(1 + R1/R2)(1/R2)}]½  = R2[R1/(R1+R2)]½.  



d) Does the Thevenin equivalent resistance REQ equal the Norton equivalent resistance 
REQ in your calculations above?  Does VEQ = IEQREQ, where REQ is the Thevenin 
equivalent resistance above? 
 
Yes, and yes! 
 

e) Is the power P’ dissipated in the Thevenin equivalent circuit equal to P?  If not, why?  
In the limit of small Rload, what ratio between R1 and R2 is needed to make P’ = P? 
 
No: P’ = VEQ

2/(REQ+Rload) = (PR2
2/(R1+R2))/[ R2[R1/(R1+R2)]½ + Rload] which is 

certainly not identical to P.  This is because VEQ and REQ were calculated in very 
different limiting conditions: VEQ was calculated in the limit that Rload → ∞, and REQ 
was calculated in the limit that Rload << REQ.  In the limit of small Rload, P’ = 
(PR2

2/(R1+R2))/[R2[R1/(R1+R2)]½] = PR2/[R1(R1+R2)]½.  If P’ = P, then R2/[R1(R1+R2)]½ 
= 1, which implies R2

2 = R1
2 + R1R2, i.e. R2

2 – R1R2 – R1
2 = 0, implying R2 = 

(R1±sqrt(R1
2+4R1

2))/2.  Both R1 and R2 must be positive, so the + option is the only 
physical option, and thus R2 = R1(1+sqrt(5))/2, i.e. R2:R1 = (1+sqrt(5))/2, which is 
sometimes known as the golden ratio. 

 
 
 
3.  At time t = 0, someone closes the switch of the circuit below.  If we define the rise time of 

the circuit to be the time the circuit takes to go from 10% to 90% of its final value, show 
that the rise time of this circuit equals 2.2RC. 

       A 
       R         
        VS        C    B 
 
 
 
We want to determine the voltage at A, which we can call VA, as a function of time.  We know 
that the charge Q on the capacitor will be Q = CVA.  We additionally know from Ohm’s law 
that VS  – VA = IR.  Taking the derivative of the first of these two equations, we have that I = 
CdVA/dt, and thus, inserting that in the second equation, we have that VS  – VA = RC(dVA/dt).  
Let’s define a variable V’ ≡ VS  – VA.  Then dV’/dt = –dVA/dt, and thus V’ = –RC(dV’/dt).  We 
can solve this differential equation: we have –dt/(RC) = dV’/V’, and integrating gives us that 
ln(V’) = –t/(RC) + α, where α is a constant of integration.  That implies that V’ = Ae–t/(RC), 
where A is just another way of writing the constant of integration (A ≡ eα), and thus VA = VS  – 
Ae–t/(RC).  We can assume that the capacitor is initially uncharged, and thus at t = 0, VA must 
equal 0, and thus A must be identical to VS, and thus VA = VS (1 – e–t/(RC)).  We want to know at 
what times t does VA equal 10% and 90% of VS; i.e. when does e–t/(RC) equal 0.9 and 0.1?  This 
occurs when t/(RC) = –ln(0.9) and t/(RC) = –ln(0.1), i.e. when t = 0.105RC and t = 2.303RC.  
The difference between those two times, i.e. the rise time, is almost exactly 2.2RC. 
 
 
 



4. Bugg problems 1.10.3, 1.10.6, 1.10.7, 1.10.9, 2.10.7, 2.10.8, 2.10.12, 2.10.13, 3.12.6, 
3.12.13. 

 
Solutions to these will either be posted later, and/or done during the review session on 
Wednesday afternoon. 
 
 


