P321b Final Practice Problems
 (note that these are a little bit harder than the problems on the actual final, but are good practice for them)

1. Consider a force law of the form

$$
F(r)=-k / r^{2}-k^{\prime} / r^{4}
$$

with k and k^{\prime} being positive constants. Show that if $\rho^{2} k>k^{\prime}$, then a particle can move in a stable circular orbit at $r=\rho$.
2. (F\&W 1.13) A rocket with initial velocity v_{∞} and impact parameter b approaches a planet of radius R_{0} and mass m. What is the condition that the rocket will strike the planet? If it just misses, what is its angle of deflection?
3. (F\&W 1.14) The cross section to strike the nuclear surface is of interest when considering nuclear reactions during heavy-ion scattering. By integrating over appropriate impact parameters, show that the cross section to strike a nucleus of radius R in Rutherford scattering is given by $\sigma_{r}=\pi R^{2}\left(1-V_{\mathrm{c}} / E\right)$, where $V_{\mathrm{c}}=z Z e^{2} / R$ is the repulsive Coulomb barrier at the nuclear surface, Z is the atomic number of (i.e. number of protons in) the nucleus, z is the charge (in units of the electron/proton charge) of the incoming particle, and it is assumed that $E \geq V_{\mathrm{c}}>0$.
4. A uniform bar of length l and mass m is suspended by two equal springs of equilibrium length b and force constant k, as shown below:

Find the (three) normal modes of small oscillation in the plane.
5. Obtain a solution to the differential equation:

$$
\ddot{x}+\omega_{0}{ }^{2} x-\lambda x^{2}=0
$$

correct to second order by writing $x(t)=x_{0}(t)+\lambda x_{1}(t)+\lambda^{2} x_{2}(t)$, and using the method of perturbations.

