P321b Midterm Practice Problem SOLUTIONS

1. Two spheres connected by a spring

Two spheres, of masses m_{1} and m_{2} respectively, are connected by a spring with spring constant k (and with zero length when unextended, so that the potential energy of the spring when stretched to length r is $+1 / 2 k r^{2}$). The spheres are orbiting around each other in a vacuum, so neither one of the spheres has a fixed position in space. Let us, however, consider a coordinate system which is non-rotating, but is always centred on Sphere 1 (i.e., rather than a coordinate system centred at the centre of mass), and thus we will only consider the position $\vec{r}(t)$ of Sphere 2 relative to that of Sphere 1.
(a) What is the Lagrangian for the full system, in terms of $m_{2}, \vec{r}(t), \vec{r}(t)$, and the spring constant k ?

$$
\mathrm{L}=1 / 2 m_{2} \overrightarrow{\dot{r}^{2}}-1 / 2 \overrightarrow{k r^{2}} .
$$

(b) Write down the resulting Lagrange's equations of motion, in terms of the polar coordinates r and ϕ (in the plane of motion of the system).

In polar coordinates, we have $\mathrm{L}=1 / 2 m_{2}\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-1 / 2 k r^{2}$. Thus, we have $\mathrm{d} / \mathrm{d} t(\partial \mathrm{~L} / \mathrm{d} \dot{\phi})=0$ $\Rightarrow m_{2} r^{2} \dot{\phi}=$ a constant angular momentum Λ, and $\mathrm{d} / \mathrm{d} t(\partial \mathrm{~L} / \mathrm{d} \dot{r})-(\partial \mathrm{L} / \mathrm{d} r)=0 \quad \Rightarrow$ $m_{2} \ddot{r}=m_{2} r \dot{\phi}^{2}-k r \quad \Rightarrow \quad \ddot{r}=-k r / m_{2}+\Lambda^{2} / m_{2}{ }^{2} r^{3}$.
(c) What are the solutions to these equations of motion?

The differential equation above is not easy to solve. It is a complicated integral, and even though it doesn't look too horrible, it can't even be solved in Mathematica or Maple. So please don't worry about solving it - I certainly wouldn't ask you to solve a nasty differential equation like that on a real exam! But I will do it here anyway:
$\ddot{r}=\mathrm{d} \dot{r} / \mathrm{d} r \mathrm{~d} r / \mathrm{d} t=\dot{r} \mathrm{~d} \dot{r} / \mathrm{d} r=\alpha r+\beta / r^{3}$, where $\alpha=-k / m_{2}$ and $\beta=\Lambda^{2} / m_{2}{ }^{2}$. Multiplying both sides by $\mathrm{d} r$ and integrating, we get that $1 / 2 r^{2}=\alpha r^{2} / 2-\beta /\left(2 r^{2}\right)+\mathrm{C}$, where C is a constant.

Multiplying both sides by two, then square-rooting, and then multiplying both sides by $\mathrm{d} t$ gives us that t is equal to the integral of $\mathrm{d} r / \operatorname{sqrt}\left(\alpha r^{2}-\beta / r^{2}+\mathrm{C}\right)$ plus another constant of integration D. Substituting $s=r^{2}$ and $\mathrm{d} s=2 r \mathrm{~d} r$ gives us that t is equal to the integral of $\mathrm{d} s /\left(2 \operatorname{sqrt}\left(\alpha s^{2}+\mathrm{C} s-\beta\right)\right)+\mathrm{D}$. This integral can be found in big tables of integrals (like Gradshteyn \& Ryzhik), and the result is that $-1 /(2 \operatorname{sqrt}(\beta)) \arcsin \left((\mathrm{C}-2 \beta s) /\left(\mathrm{C}^{2}-4 \alpha \beta\right)\right)=$ $t+\mathrm{D}$. Substituting r back in and simplifying, one gets that $r(t)=\operatorname{sqrt}\left(\operatorname{sqrt}\left(\mathrm{m}_{2} \mathrm{C}^{2}-4 k \Lambda\right) \sin \left(\left(2 \Lambda t / m_{2}\right)+\mathrm{D}\right)+\mathrm{C}\right) /(\Lambda \operatorname{sqrt}(2)) . \quad \mathrm{Ugh}!$
(d) What is the total energy of the system?

The total energy $\mathrm{E}=\dot{r}(\partial \mathrm{~L} / \mathrm{d} \dot{r})+\dot{\phi}(\partial \mathrm{L} / \mathrm{d} \dot{\phi})-\mathrm{L} \quad \Rightarrow \quad \mathrm{E}=1 / 2 m_{2}\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)+1 / 2 k r^{2}(=\mathrm{T}+\mathrm{U})$.
Note that E can also be written in terms of the (constant) angular momentum as $1 / 2 m_{2} \dot{r}^{2}+\Lambda^{2} / 2 m_{2} r^{2}+1 / 2 k r^{2}$.
2. Two gravitating masses m_{1} and m_{2} are separated by a distance r_{0} and released from rest. Write down the Lagrangian and solve Lagrange's equations of motion to show that when the separation is $r\left(<r_{0}\right)$, the speeds are: $v_{1}=m_{2} \operatorname{sqrt}\left[\left(2 \mathrm{G} /\left(m_{1}+m_{2}\right)\right)\left(1 / r-1 / r_{0}\right)\right] \quad$ and $v_{2}=m_{1} \operatorname{sqrt}\left[\left(2 \mathrm{G} /\left(m_{1}+m_{2}\right)\right)\left(1 / r-1 / r_{0}\right)\right]$.

If x_{1} is the position of the first mass and x_{2} is the position of the second, the Lagrangian $\mathrm{L}=\mathrm{T}-\mathrm{U}=1 / 2 m_{1} \dot{x}_{1}^{2}+1 / 2 m_{2} \dot{x}_{2}^{2}+\mathrm{G} m_{1} m_{2} /\left(x_{2}-x_{1}\right)$. We also know that $r=x_{2}-x_{1}$ and, if we are working in the centre of mass frame, that $m_{1} x_{1}+m_{2} x_{2}=0$. Thus $x_{1}=-m_{2} x_{2} / m_{1}$ and $x_{2}=r /(1+$ m_{2} / m_{1}), and the Lagrangian can be written purely in terms of r :
$\mathrm{L}=m_{1} m_{2} \dot{r}^{2} /\left(m_{1}+m_{2}\right)+\mathrm{G} m_{1} m_{2} / r$. Thus we have Lagrange's equation of motion for r : $m_{1} m_{2} \ddot{r} /\left(m_{1}+m_{2}\right)=-\mathrm{G} m_{1} m_{2} / r^{2} \Rightarrow \ddot{r}=-\mathrm{G}\left(m_{1}+m_{2}\right) / r^{2}$. One can obtain the solution to that equation of motion via $\ddot{r}=\dot{r} \mathrm{~d} \dot{r} / \mathrm{d} r=-\mathrm{G}\left(m_{1}+m_{2}\right) / r^{2}$, multiplying both sides by $\mathrm{d} r$, and integrating, which gives you (defining $v \equiv \dot{r})$ that $v^{2}=2 \mathrm{G}\left(m_{1}+m_{2}\right)(1 / r)+\mathrm{C}$. We know $v^{2}=0$ when $r=r_{0}$, thus $v^{2}=2 \mathrm{G}\left(m_{1}+m_{2}\right)\left(1 / r-1 / r_{0}\right)$, and thus $v=\operatorname{sqrt}\left[2 \mathrm{G}\left(m_{1}+m_{2}\right)\left(1 / r-1 / r_{0}\right)\right]$. We also know that $x_{2}=m_{1} r /\left(m_{1}+m_{2}\right)$, thus $v_{2}=m_{1} v /\left(m_{1}+m_{2}\right)$, and thus $v_{2}=m_{1} \operatorname{sqrt}\left[\left(2 \mathrm{G} /\left(m_{1}+m_{2}\right)\right)\left(1 / r-1 / r_{0}\right)\right]$, and similiarly, speed $v_{1}=m_{2} \operatorname{sqrt}\left[\left(2 \mathrm{G} /\left(m_{1}+m_{2}\right)\right)\left(1 / r-1 / r_{0}\right)\right]$.

