P321b Midterm Practice Problems

1. Two spheres connected by a spring

Two spheres, of masses m_{1} and m_{2} respectively, are connected by a spring with spring constant k (and with zero length when unextended, so that the potential energy of the spring when stretched to length r is $+1 / 2 k r^{2}$). The spheres are orbiting around each other in a vacuum, so neither one of the spheres has a fixed position in space. Let us, however, consider a coordinate system which is non-rotating, but is always centred on Sphere 1 (i.e., rather than a coordinate system centred at the centre of mass), and thus we will only consider the position $\vec{r}(t)$ of Sphere 2 relative to that of Sphere 1.
(a) What is the Lagrangian for the full system, in terms of $m_{2}, \vec{r}(t), \vec{r}(t)$, and the spring constant k ?
(b) Write down the resulting Lagrange's equations of motion, in terms of the polar coordinates r and ϕ (in the plane of motion of the system).
(c) What are the solutions to these equations of motion?
(d) What is the total energy of the system?
2. Two gravitating masses m_{1} and m_{2} are separated by a distance r_{0} and released from rest. Write down the Lagrangian and solve Lagrange's equations of motion to show that when the separation is $r\left(<r_{0}\right)$, the speeds are: $v_{1}=m_{2} \operatorname{sqrt}\left[\left(2 \mathrm{G} /\left(m_{1}+m_{2}\right)\right)\left(1 / r-1 / r_{0}\right)\right] \quad$ and $v_{2}=m_{1} \operatorname{sqrt}\left[\left(2 \mathrm{G} /\left(m_{1}+m_{2}\right)\right)\left(1 / r-1 / r_{0}\right)\right]$.

