
P321(b), Assignement 1

1 Exercise 3.1 (Fetter and Walecka)

a)
The problem is that of a point mass rotating along a circle of radius a, rotating with

a constant angular velocity Ω. Generally, 3 coordinates are needed to characterize the
point mass, however, because the mass is constrained to the circle, and due to the constant
angular velocity, the system only has one degree of freedom. Therefore, only one generalized
coordinate is needed here, we take the angle θ, from the downward vertical. In the spherical
coordinate system, the point mass coordinates are

x = a sin θ cosφ ,

y = a sin θ sinφ ,

z = a cos θ .

(1)

The components of the velocity vector are obtained by differentiating the above according
to time

ẋ = aθ̇ cos θ cosφ− aΩ sin θ sinφ ,

ẏ = aθ̇ cos θ sinφ+ aΩ sin θ cosφ ,

ż = −aθ̇ sin θ .

(2)

Where the angular velocity is Ω = φ̇. Looking at the coordinates x, y, z, it might look like we
have two degrees of freedom, since we need both θ and φ to specify the position. However,
because Ω = φ̇ is fixed, we have φ = Ωt which uniquely gives φ at any time t.

The Lagrangian L is the difference between the kinetic energy T = mv2/2, and the
potential energy V = mgz. We choose to take the zero potential at the bottom of the ring,
we get

T =
m

2
(ẋ2 + ẏ2 + ż2) =

ma2

2
(θ̇2 + Ω2 sin2 θ) ,

V = mga(1− cos θ) ,

L = T − V =
ma2

2
(θ̇2 + Ω2 sin2 θ) +mga(cos θ − 1) .

(3)
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b)
The point of equilibrium is the point where the mass does not move with respect to the

ring. We have to find the equations of motion, and look at the point where θ̇ = 0. The
equations of motion are given by the Lagrange equations. Since we only have one degree of
freedom q = θ, the equations are

d

dt

dL

dθ̇
− dL

dθ
= 0 =⇒ θ̈ − Ω2 sin θ cos θ +

g

a
sin θ = 0 . (4)

At equilibrium, we have θ = θ0, θ̇ = 0, θ̈. Plugging this into the above equations gives

cos θ0 =
g

aΩ2
. (5)

It is possible to obtain the same condition using Newton’s mechanics. Indeed, the equilibrium
is achieved because the force of gravity ~W = m~g, the centrifugal force ~Fc = mv2/a sin θ~ur,

and the normal force ~N = −N~er, all compensate exactly to 0. Here ~ur is a unit vector
pointing outward, parallel to the plane (x, y), and ~er is the radial vector, and in the local
rotating frame we also have the vector ~eθ. In the spherical coordinate system, these vector
are

~er = sin θ cosφ~ex + sin θ sinφ~ey − cos θ~ez ,

~eθ = θ̇ cos θ cosφ~ex + θ̇ cos θ sinφ~ey + θ̇ sin θ~ez ,

~ur = sin θ~er + cos θ~eθ .

(6)
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Figure 1: Local frame
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The total force
∑ ~F = 0 at equilibrium, and when split in the directions ~er, ~eθ give the

equations

~er : N =
mv2

a
+mg cos θ0 = maΩ2 sin2 θ0 +mg cos θ0 ,

~eθ :
mv2

a

cos θ0
sin θ0

−mg sin θ0 = 0 ⇐⇒ maΩ2 sin θ0 cos θ0 −mg sin θ0 = 0 .

(7)

The last equation is equivalent to

cos θ0 =
g

aΩ2
. (8)

c)
In order to investigate the stability of the equilibrium point, we have to perturb the

equation of motion around the equilibrium angle, and look at the solution. An oscillatory
solution (in general, non-increasing function) implies small oscillation amplitudes around
equilibrium, hence a stable point. On the other hand, an exponential (in general increasing
function) implies instability. We take θ(t) = θ0 + η(t), with η(t) � θ0, and plug this in the
equations of motion,

η̈ − Ω2 sin(θ0 + η) cos(θ0 + η) +
g

a
sin(θ0 + η) = 0 . (9)

Given that η is small, we can use the Taylor expansions cos(θ0 + η) ≈ cos θ0 − η sin θ0, and
sin(θ0 + η) ≈ sin θ0 + η cos θ0. We obtain the expanded equation as follows

η̈ + ηΩ2 sin2 θ0 = 0 . (10)

This is clearly an equation for harmonic oscillator, with frequency ω2 = Ω2 sin2 θ0. The
equilibrium point is stable.

d)
The equilibrium condition was cos θ0 = g

aΩ2 . If g > aΩ2, then cos θ0 > 1, which is not
possible. There exist no equilibrium in this case. The physical interpretation is that the
angular velocity is too small, and the centrifugal force is not enough to keep the mass at a
given height. The mass rolls down to the bottom of the ring, which is the only equilibrium
point.

2 Exercise 3.2 (Fetter and Walecka)

This problem is very similar to the previous one.
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a)
Here again, since the angle between the wire and the vertical is fixed θ = θ0, and because

the angular velocity Ω is fixed, there is only one degree of freedom, and only one generalized
coordinate which is the distance l between the mass and the origin. Because of the spherical
symmetry, the coordinates of the point mass are

x = l sin θ0 cosφ ,

y = l sin θ0 sinφ ,

z = l cos θ0 .

(11)

The components of the velocity vector are obtained by differentiating the above according
to time

ẋ = l̇ sin θ0 cosφ− lΩ sin θ0 sinφ ,

ẏ = l̇ sin θ0 sinφ+ lΩ sin θ0 cosφ ,

ż = l̇ cos θ0 .

(12)

We can readily write the kinetic and potential energies, as well as the Lagrangian

T =
m

2
(ẋ2 + ẏ2 + ż2) =

m

2

(
l̇2 + l2Ω2 sin2 θ0

)
,

V = mgl cos θ0 ,

L =
m

2

(
l̇2 + l2Ω2 sin2 θ0

)
−mgl cos θ0 .

(13)

b)
Again, in order to find the equilibrium point, we must look at the equations of motion,

which is obtained from the Lagrange equations

d

dt

dL

dl̇
− dL

dl
= 0 =⇒ l̈ − lΩ2 sin2 θ0 + g cos θ0 = 0 . (14)

The point mass will be in equilibrium at l = l0, provided that l̇ = l̈ = 0. When these
conditions are plugged in the above equation, we find

l0 =
g cos θ0
Ω2 sin2 θ0

. (15)

Similarly to the previous exercise, we can find the same condition from Newton’s forces.
There is the weight, the normal force and the centrifugal force. We decompose each on the
basis vector ~ex, and ~ez, and we get two equations

~ex : −N cos θ0 +ml0Ω
2 sin θ0 = 0 =⇒ N =

ml0Ω
2 sin θ0

cos θ0
,

~ey : N sin θ0 = mg =⇒ l0 =
g cos θ0
Ω2 sin2 θ0

.

(16)
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Figure 2: Straight wire local frame

c)
In order to investigate the stability, again we perturb the system around the equilibrium

point, and look at the effect on the motion. We take l(t) = l0 + ε(t), with ε(t) � l0, and
plug this in the equations of motion,

ε̈− (l0 + ε)Ω2 sin2 θ0 + g cos θ0 = 0 ⇐⇒ ε̈ = εΩ2 sin2 θ0 , (17)

where we used the equilibrium condition g cos θ0 = lΩ2 sin2 θ0. Since Ω
2 sin2 θ0 > 0, it is clear

that the solution is a linear combination of exponentials

ε(t) = AeΩ
2 sin2 θ0t +Be−Ω2 sin2 θ0t → ∞ . (18)

This solution is highly unstable due to the growing exponential. The equilibrium point is an
unstable equilibrium point. In the previous exercise, the equilibrium point was stable.
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