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Electrons and positrons

� spinors� ��� �

and � ��� �

(s = spin) satisfy the Dirac equations

�
	 �� � � � � � � �
and�
	 �� � � � � � � �

� adjoints� � � � 	 �

and � � � � 	 �

satisfy � �
	 � � � � � � � �
and � �
	 ��� � � � � � �

� orthogonality� �� � � �� � � �

and � �� � � �� � � �

� normalization� � � � � and � � � � � �

� completeness� � � ��� � � ��� � � 	 � � � � � and

� � � ��� � � ��� � � 	 ��� � � �
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Photons

�� �
� � � �� �  "!# $
% � �� �

� Lorentz condition% ��� � � �

� orthogonality% � &�� � % � �� � � �

� normalization% � & % � � '

� Coulomb gauge% � � �

and %( ) � �

� Completeness� � �% ��� � �  �% &��� � �+* � ,  * � ��  � * �- � �
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The Feynman Rules for QED

The Feynman rules provide the recipe for constructing an amplitude

.
from a

Feynman diagram.� Step 1: For a particular process of interest, draw a Feynman diagram with the
minimum number of vertices. There may be more than one.

	

� �0/ � � � 1/ � �

� �2/ �3 � 1/ �4
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The Feynman Rules for QED

� Step 2: For each Feynman diagram, label the four-momentum of each line,
enforcing four-momentum conservation at every vertex. Note that arrows are
only present on fermion lines and they represent particle flow, not momentum.

	

� �2/ � � � 1/ � �

� �2/ �3 � 1/ �4
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� Step 3: The amplitude depends on

1. Vertex factors

2. Propagators for internal lines

3. Wavefunctions for external lines
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Vertex Factors

� Every QED vertex,

5
5

6

contributes a factor of

798;: 6 <
.

� 8: is a dimensionless coupling constant and is related to the
fine-structure constant by => 8 ?:@
A
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Propagators

� Each internal photon connects two vertices of the form

798 : 6 <

and

798: 6 B

, so we should expect the photon propagator to
contract the indices C and D.

Photon propagator:
E 78 < BF ?

� Internal fermions have a more complicated propagator,

Fermion propagator:

7 G

/F HJI K
F ? E I ?

The sign of F matters here — we take it to be in the same
direction as the fermion arrow.
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External Lines

� Since both the vertex factor and the fermion propagators
involve

@ L @ matrices, but the amplitude must be a scalar, the
external line factors must sit on the outside.

� Work backwards along every fermion line using:

5 M in 5 M out 5 N
in 5 N

out 6 in 6 outO P O PRQ Q S < S T <
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Matrix elements I

follow fermion lines backward to give O GU K 798 6 < O GV K

5
5

6
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Matrix elements II

The matrix element is proportional to the two currents in the
diagram below.

W P OYX G 798: 6 < K OYZ [ E 798 < BG]\ Z E \ X K ? W PQ ? G 798: 6 B K Q_^ [

6

5 Ma` \ Z 5 N` \ ?

5 Ma` \ X 5 N` \ ^
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And Finally...

� Step 4: The overall amplitude is the coherent sum of the
individual amplitudes for each diagram:

b > b Z H b ? Hdc c ce f b ? f > f b Z H b ? Hc c c f ?

� Step 4a: Antisymmetrization. Include a minus sign between
diagrams that differ only in the exchange of two identical
fermions.
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Examples

� There are only a handful of ways to make tree-level diagrams
in QED.

� Today, we will construct amplitudes for Bhabha scatteringG 5 N 5 Mg 5 N 5 M K and Compton scattering

G 5 6g 5 6 K .

� Next week, we will undertake thorough calculations for Mott
scattering

G 5 hg 5 h K

, pair annihilation

G 5 N 5 Mg 6 6 K . You will
examine fermion pair-production via

G 5 N 5 Mg i Pi K

for your
assignment.
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Example: Bhabha Scattering

6

5 M ` \ Z 5 N` \ ?

5 M ` \ X 5 N` \ ^

6

5 M ` \ Z 5 N` \ ?

5 M ` \ X 5 N` \ ^

� Antisymmetrization e b > bkj E bml

bj > 7 W P O X G 798: 6 < K OZ [ E 798 < BG]\ Z E \ X K ? W PQ ? G 798: 6 B K Qn^ [

b l > 7 W P O X G 798: 6 < K Q^ [ E 798 < BG]\ Z H \ ? K ? W PRQ ? G 798: 6 B K OnZ [
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Example: Compton Scattering

5 M ` \ Z 6` \ ?

6` \ X 5 M ` \ ^
5 M ` \ Z 6` \ ?

6` \ X 5 M ` \ ^

� No antisymmetrization e b > b Z H b ?

b Z > 7 o P O ^ G 78: 6 < K 7 G
/\ Z E /\ X HI KG \ Z E \ X K ? E I ? G 798: 6 B K OYZ p S TX B S ? <

b ? > 7 o P O ^ G 78: 6 < K 7 G
/\ Z H /\ ? HI KG \ Z H \ ? K ? E I ? G 798: 6 B K OJZ p S TX < S ? B
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Polarized Particles

� A typical QED amplitude might look something like

brq W P OnZ s < Q ? [ SX <
The Feynman rules won’t take us any further, but to get a
number for

b

we will need to substitute explicit forms for the
wavefunctions of the external particles: P O Z , Q ? , and StX < .

� If all external particles have a known polarization, this might
be a reasonable way to calculate things. More often, though,
we are interested in unpolarized particles.
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Spin-Averaged Amplitudes

� If we do not care about the polarizations of the particles then
we need to

1. Average over the polarizations of the initial-state particles

2. Sum over the polarizations of the final-state particles

in the squared amplitude

f b f ?

.

� We call this the spin-averaged amplitude and we denote it byu f b f ? v

� Note that the averaging over initial state polarizations involves
summing over all polarizations and then dividing by the
number of independent polarizations, so

u f b f ? v

involves a
sum over the polarizations of all external particles.
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Spin Sums

� Let’s simplify things even further and suppose that we have

b q W P OZ s O ? [
Then f b f ? q W P OnZ s O ? [ W P OZ s O ? [ T

q W P OYZ s O ? [ w O xZ 6 y s O ? z x

q W P OYZ s O ? [ w O x ? s x 6 y x OYZ z

q W P OYZ s O ? [ w O x ? 6 y 6 y s x 6 y OYZ z

q W P OYZ s O ? [ { P O ? P s OYZ |
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f b f ? q W P OYZ s O ? [ { P O ? P s OYZ |

� Applying the completeness relation

l} ~ Z�� ? Ol}�� P Ol}�� > G
/\ � HI � K

to O ? P O ? in the squared-amplitude above (summing over the
spins of paticle 2),

l�
f b f ? q { P OnZ s G

/\ ? HI ? K P s OnZ |

q W P OZ � OJZ [
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� The right-hand side is just a number, but if we represent the
matrix multiplication with summations over indices, we can
rewrite it as W P OYZ � OYZ [ > G P OYZ K � ��� G OZ K�

> ��� G OYZ P OZ K� �

> W � G OYZ P OYZ K [ � �

> ��� W � G OYZ P OYZ K [

� Finally, we apply the completeness relation once again, so that
we get

l�
f b f ? q ��� W � G

/\ Z HI Z K [
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� In total, we have

b q W P OYZ s O ? [

e u f b f ? v q V U ��� { s G

/\ ? H I ? K P s G
/\ Z HJI Z K |

The factor of

Z ? is from the averaging over initial spins,
assuming exactly one of O Z and O ? corresponds to an
initial-state particle. If they are both in the initial state (e.g.,
pair annihilation), the factor is

Z ^ . If neither is in the initial state
(e.g., pair production), the factor is

V

.
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Casimir’s Trick

� This procedure of calculating spin-averaged amplitudes in
terms of traces is known as Casimir’s Trick.

� � ���� ��� �
W P O;� s Z O� [ W P O� s ? O� [ T > ��� { s Z G

/\ � H I � K P s ? G/\ � HJI � K |

� If antiparticle spinors

G Q K are present in the spin sum, we use
the corresponding completeness relation

l} ~ Z� ? Ql}� PRQl}� > G

/\ � E I � K
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Traces

� Because of Casimir’s Trick, we’re going to find ourselves
calculating a lot of traces involving 6-matrices.

� General identities about traces:

��� G� H � K > ��� G � K H ��� G � K

��� G =� K > = ��� G � K

��� G� � K > ��� G �� K

��� G� � � K > ��� G �� � K > ��� G � �� K
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Building Blocks

� The two major identities that we will need in order to build
more complicated trace identities are

8 < B 8 < B > @

� 6 <` 6 B � > U 8 < B G L � K

� You can show that 6 < 6 < > @

and 6 < 6 B 6 � 6 < > @ 8 B �

. In a similar
fashion, we find that

6 < 6 B 6 < > 6 < GU 8 < B E 6 < 6 B K

> U 6 B E 6 < 6 < 6 B

> U 6 B E @ 6 B

> E U 6 B
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Simple Trace Identities

� The simplest trace identity is:

��� GV K > @

� The trace of a single 6 matrix is zero, as is the trace of any odd
number of 6-matrices.

� For 2 6-matrices, ��� G 6 < 6 B K > ��� G 6 < 6 B H 6 B 6 < K� U

> ��� GU 8 < B K� U

> 8 < B ��� GV K

> @ 8 < B

�

��� G 6 < 6 B 6 � 6 � K > @ �8 < B 8 � � E 8 < � 8 B � H 8 < � 8 B ��
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Traces With �  

� The vertex factor for weak interactions involves 6 ¡ .

� By inspection,

��� G 6 ¡ K > ¢

.

� Since 6 ¡ > 7 6 y 6Z 6 ? 6 X (an even number of 6-matrices),

��� G 6 ¡ 6 < K > ¢

��� G 6 ¡ 6 < 6 B 6 � K > ¢

� Also, ��� G 6 ¡ 6 < 6 B K > ¢
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The Non-Trivial �  

Trace

� Only with 4 (or more) other 6-matrices can we obtain a
nonzero trace involving 6 ¡ :

��� G 6 ¡ 6 < 6 B 6 � 6 � K > @ 7 S < B � �

where the totally antisymmetric tensor is defined as

S < B � �¤£
¥¦§¦©¨

¦§¦]ª
E V for even permutations of 0123HV for odd permutations of 0123¢

if any 2 indices are the same
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Contractions of the « Tensor

� Since S < B � �

is completely antisymmetric, we will get zero
when we contract this with any tensor that is symmetric in 2
indices, such as 8 < B

or

G \ <Z \ B? H \ <? \ BZ K
.

� Only contractions with another antisymmetric tensor survive:

S < B � � S < B � � > E U @

S < B � � S < B �¬ > E ® ¯ �¬S < B � � S < B ° ¬ > E U � ¯ �° ¯ �¬ E ¯ �¬ ¯ �° �

...
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Example 1

� One of the traces involved in Bhabha scattering is

±> ��� W 6 < G

/\ Z HI K 6 B G

/\ X HJI K [
We can expand this out to create 4 terms, but 2 of these terms
(the ones linear inI ) will involve 3 6-matrices, and are
therefore zero. Thus,

± > ��� G 6 <

/\ Z 6 B
/\ X K HI ? ��� G 6 < 6 B K

> @ G \ <Z \ BX H \ <X \ BZ E G \ Z² \ X K 8 < B K H @ I ? 8 < B

This result will be contracted with another trace that is
covariant (i.e., < B as opposed to contravariant

< B

) in C and D.
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Example 2

� It isn’t always a joyous task to contract 2 traces together.

� Consider ³> ��� G 6 <

/\ Z 6 B

/\ ? K ��� G 6 </\ Z 6 B/\ ? K
Evaluating the traces,

³ > @ W\ <Z \ B? H \ BZ \ <? E G \ Z² \ ? K 8 < B [

L @ W\ Z < \ ? B H \ Z B \ ? < E G]\ Z² \ ? K 8 < B [

> V ® {U \ ?Z \ ?´? H U G]\ Z² \ ? K ? H @ G \ Z ² \ ? K ? E @ G \ Z² \ ? K ? |

> µU {I ?Z I ?¶? H G]\ Z² \ ? K ? |
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Summary

� The Feynman rules for QED provide the recipe for translating
Feynman diagrams into mathematical expressions for the
amplitude.

� If we are interested in the spin-averaged amplitude

u f b f ? v

then we need not ever use explicit fermion spinors and photon
polarization vectors.

� Instead, Casimir’s Trick allows us to calculated spin-averaged
amplitudes in terms of traces of 6-matrices.

� With practice, 6-matrix traces can be taken quite quickly.
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