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Electrons and positrons

spinors
u(%) and v(®) (s = spin) satisfy the Dirac equations (y#p, — m)u = 0 and
(Y#pu +m)v =10

adjoints
u = ulv? and v = vT49 satisfy w(y*p, — m) = 0 and T(y#p, + m) =0
orthogonality

ﬂ(l)u(2) =0 and 6(1)11(2) =0

normalization

uu = 2m and vv = —2m

completeness
ZS u(s)ﬂ(s) — 'Y'up'u, +m and ZS U(S)E(S) — ’Y'up,u, —m
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Photons

At (x) = ae P T (p)

Lorentz condition
epy =0

orthogonality

€€L1>k)€/fd(2) =0

normalization
TR —
e ey = 1

Coulomb gauge
e =0ande-p=0

Completeness
s (e(0))il€(5y)i = di — (pips)/p?
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The Feynman Rules for QED

The Feynman rules provide the recipe for constructing an amplitude M from a
Feynman diagram.

e Step 1: For a particular process of interest, draw a Feynman diagram with the
minimum number of vertices. There may be more than one.
€, p3 €+, b4
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The Feynman Rules for QED

e Step 2: For each Feynman diagram, label the four-momentum of each line,
enforcing four-momentum conservation at every vertex. Note that arrows are
only present on fermion lines and they represent particle flow, not momentum.

- +
€ , P3 €, P4

Physics 424 Lecture 16 Page 5



e Step 3: The amplitude depends on

1. Vertex factors

2. Propagators for internal lines

3. Wavefunctions for external lines
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Vertex Factors

o Every QED vertex,

e
contributes a factor of ¢g.v*.

® ¢g. is a dimensionless coupling constant and is related to the
fine-structure constant by

_ 9
47

8%
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Propagators

e Each internal photon connects two vertices of the form ig.y*
and 7g.v", so we should expect the photon propagator to
contract the indices 1 and v.

—t9uv

Photon propagator: 2

e Internal fermions have a more complicated propagator,

i(f +m)
7

Fermion propagator: —

The sign of ¢ matters here — we take it to be in the same
direction as the fermion arrow.
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External Lines

e Since both the vertex factor and the fermion propagators
involve 4 x 4 matrices, but the amplitude must be a scalar, the
external line factors must sit on the outside.

o Work backwards along every fermion line using;:

PR AV IRy
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Matrix elements I

follow fermion lines backward to give  @(2)igy*u(1)

Physics 424 Lecture 16 Page 10



Matrix elements I1

The matrix element is proportional to the two currents in the
diagram below.

waliger )l (=2 ) foaiger s

(p1 —p3)2

€+, P4

Physics 424 Lecture 16 Page 11



And Finally...

e Step 4: The overall amplitude is the coherent sum of the
individual amplitudes for each diagram:

M = Mi+ Mo+ ...
= [M? = |Mi+My+..J

o Step 4a: Antisymmetrization. Include a minus sign between
diagrams that differ only in the exchange of two identical
fermions.
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Examples

e There are only a handful of ways to make tree-level diagrams
in QED.

¢ Today, we will construct amplitudes for Bhabha scattering
(et e — eT e7) and Compton scattering (e vy — e 7).

e Next week, we will undertake thorough calculations for Mott
scattering (e £ — e £), pair annihilation (et e~ — ~ ). You will
examine fermion pair-production via (e™ e~ — f f) for your
assighment.
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Example: Bhabha Scattering

e—l_a P4 6_7 P3

€ , P1 6+, P2 6_7 P1

o Antisymmetrization = M = M; — M,

€+7 P4

6+7 P2

M, z‘[ﬂg(igev’“‘)m]( e )[772(@'96’7”)’04]

(p1 —p3)2

M. = ifustige)onl (22 ) Batigen* s
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Example: Compton Scattering

Y, P3 P4 Y, P3

o XD

Y, D2 Y, D2

e No antisymmetrization = M = M; + M
i($1 —

autiger) (

' iu4(i967“) ( .
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Polarized Particles

o A typical QED amplitude might look something like
M ~ [ﬂlI‘“vz] €3

The Feynman rules won't take us any further, but to get a
number for M we will need to substitute explicit forms for the
wavefunctions of the external particles: %, v, and e3,,.

o If all external particles have a known polarization, this might
be a reasonable way to calculate things. More often, though,
we are interested in unpolarized particles.
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Spin-Averaged Amplitudes

¢ If we do not care about the polarizations of the particles then
we need to

1. Average over the polarizations of the initial-state particles
2. Sum over the polarizations of the final-state particles

in the squared amplitude |M|°.

e We call this the spin-averaged amplitude and we denote it by

(IMP)

e Note that the averaging over initial state polarizations involves
summing over all polarizations and then dividing by the

number of independent polarizations, so <\M |2> involves a

sum over the polarizations of all external particles.
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Spin Sums

o Let’s simplify things even further and suppose that we have

M ~/ [ﬂ1Fu2]

M| 71 Dus] [ Tuo)”

_ T t
w1l ug u]ifyorug]

1 T us] u%FHOTul}

1 Tug) UEVOVOFWOM}

:’L_l,lrfU,Q: :’L_l,gful]
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|M‘2 ~ [ﬂlfug] |:7._1,2f'u,1]

e Applying the completeness relation

> wt = (i +m)

81'21,2

to uatie in the squared-amplitude above (summing over the
spins of paticle 2),

E:V\/”2 ~  |u T (P2 + ma)Tus|

52

~ |1 Quq]
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e The right-hand side is just a number, but if we represent the
matrix multiplication with summations over indices, we can

rewrite it as

U1 Q] (u1); Qij (u1),
Qij (w1t1)
@ (u1u1)];;
Tr [Q(u1t1)]

e Finally, we apply the completeness relation once again, so that

we get

D IMP ~ Tr[Q(# + my)]

S1
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e In total, we have
M ~/ [’I_L1FUQ]
= <\M|2> ~ = Tr [T(Ba + m2)L(P1 + m)]

1
2

The factor of 1 is from the averaging over initial spins,
assuming exactly one of u; and ugy corresponds to an
initial-state particle. If they are both in the initial state (e.g.,
pair annihilation), the factor is . If neither is in the initial state
(e.g., pair production), the factor is 1.
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Casimir’s Trick

e This procedure of calculating spin-averaged amplitudes in
terms of traces is known as Casimir’s Trick.

> [aelvus] [wal2us]” = Tr [T1 (B + mu) L2 (#a + ma))

all spins

e If antiparticle spinors (v) are present in the spin sum, we use
the corresponding completeness relation

> v = (B —my)

Si:1,2
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Traces

e Because of Casimir’s Trick, we're going to find ourselves

calculating a lot of traces involving y-matrices.

e (General identities about traces:

Tr(A) + Tr(B)
aTr(A)

Tr(BA)

Tr(CAB) = Tr(BCA)
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Building Blocks

e The two major identities that we will need in order to build
more complicated trace identities are

g,uvguy = 4
{v*, 7"} 2" (x1)

e You can show that v,v* = 4 and 7,7*y*y* = 4¢**. In a similar
fashion, we find that

YuY Y Tu (29" = 7H9")
279" = yu"*y”
2vY — 4~¥
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Simple Trace Identities

The simplest trace identity is: Tr(1) =4

The trace of a single v matrix is zero, as is the trace of any odd
number of y-matrices.
For 2 y-matrices, Tr(y*~") = Tr(y*4" +~4"+*) /2
Tr(2¢9")/2
9" Tr(1)
49+
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Traces With ~°

The vertex factor for weak interactions involves ~°.
By inspection, Tr(y”) = 0.
Since v° = i7%y1y2+3 (an even number of y-matrices),

Tr(y°y*) 0
Tr(v*y#~"7?) 0

Tr(y°y#y") =
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The Non-Trivial v° Trace

e Only with 4 (or more) other y-matrices can we obtain a
nonzero trace involving °:
Tr (7 ) = 4iet N
where the totally antisymmetric tensor is defined as

([ —1  for even permutations of 0123

e = ¢ 41  for odd permutations of 0123

L0 if any 2 indices are the same
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Contractions of the ¢ Tensor

e Since e#¥*? is completely antisymmetric, we will get zero

when we contract this with any tensor that is symmetric in 2
indices, such as g*” or (pi'py + phpY).

e Only contractions with another antisymmetric tensor survive:

VAo o

e eer = —2(6p67 —6}67)
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Example 1

e One of the traces involved in Bhabha scattering is

T = Tr [y*(p1 + m)v" (¥3 + m)]

We can expand this out to create 4 terms, but 2 of these terms
(the ones linear in m) will involve 3 v-matrices, and are
therefore zero. Thus,

T = Tr(y"$17"¥3) + m*Tr(y*~")
= 4(pi'ps + koY — (p1 - p3)g"”) + 4m> g

This result will be contracted with another trace that is
covariant (i.e., ,,, as opposed to contravariant #*) in p and v.
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Example 2

e [tisn’t always ajoyous task to contract 2 traces together.

e Consider A = Tr(v*#17"¥2) Tr(vupb17.¥2)

Evaluating the traces,

A = 4lpi'ps +pipy — (1 p2)g"”]
x4 [p1up2v + PruP2u — (P1 - P2) 9]
16 [2p1p5 + 2(p1 - p2)” + 4(p1 - p2)® — 4(p1 - p2)°]
32 [m%m% + (p1 'pz)ﬂ
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Summary

The Feynman rules for QED provide the recipe for translating
Feynman diagrams into mathematical expressions for the
amplitude.

If we are interested in the spin-averaged amplitude <|M \2>

then we need not ever use explicit fermion spinors and photon
polarization vectors.

Instead, Casimir’s Trick allows us to calculated spin-averaged
amplitudes in terms of traces of y-matrices.

With practice, y-matrix traces can be taken quite quickly.
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