Poisson Limits Issue/Question

The Gehrels paper (which is copied after these two pages) uses the “standard” formulae for
calculating upper and lower limits A, and A, in the case where n random (Poisson-
distributed) events are detected in a given observation:

n n-1
Ae™ Ae™
1-CL = EO T ana CL = EO 5

where CL € (0,1) is the confidence level (these are Eq. 1 & 2 in Gehrels). The problem is
that these limits tend to over-cover on average - the interval between them is usually too large.
This can be seen in Fig. 2 in the Gehrels paper:
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These plots show that the confidence intervals usually over-cover, in the specific example of a
confidence level of 0.8413 for the upper and lower limits. Only at the points where the plots
above reach a minimum do the limits provide correct coverage. If one wants uncertainties in
which one is absolutely certain never to under-cover, but for which some over-coverage is not a
problem, that is OK. But if one would like uncertainties that provide the correct coverage “on
average,” these uncertainties are too large.

Ultimately, this is because the Poisson distribution is discrete, and one can’t detect a fraction of
an event. Thus, by performing a measurement, one is in effect truncating to an integer the
number of events one would “expect” to measure. If one detects 10 events, and wants to



determine a true rate from such a measurement, it is often good to think of the measurement as
actually implying that one has detected a “number of events” that falls in the interval [10,11).

This is in fact done when one determines the central value of the true rate from such a
measurement. But when determining the uncertainties, the formulae above are really
effectively assuming that the integral value plus one is the central value, and thus provide larger
uncertainties which tend to over-cover on average.

One clearly does not want to replace this with a formula that would tend to under-cover, as
would happen by effectively assuming that the integral value itself is the central value. But by
taking the average between the two, I think one may obtain limits that tend to be correct “on
average,” and which do not bias toward over- or under-coverage. To do this, one would make
the following replacements:

To calculate upper limit A, :

Standard/Gehrels new (alternate form of new)
n n-1 n n-1
Ale™ Ale™ Ale™ A 0.51"
o - BEE - as(SHCLSEL] L (54 0
x! x! x! x! n!
x=0 x=0 x=0 x=0

To calculate lower limit }“f :

Standard/Gehrels new (alternate form of new)
n-1 n-1 n n-1
Ae™ Ae™ Ae™ A 0.5A)
SRS N IR | AN P R S | A7
x! x! x! x! n!
x=0 x=0 x=0 x=0

Does this appear to be a reasonable thing to do? lL.e., wouldn’t it make the fraction of observers
with upper limit greater than the true rate, and lower limit less than the true rate, be (at least
approximately) equal to the CL, when averaged over the estimate of the probability density
function of the true rate?

If so, it would perhaps be very worthwhile for Dag and I to calculate approximate formulae,

analogous to the ones in the Gehrels paper, e.g. A, =n+1+4n+0.75 which provide people
with trivial-to-calculate approximations to the correct uncertainties, and which are fairly

accurate (better than, e.g., the usual )bu =n+ \/; ), but which do not tend to over-cover like

that A, =n+1+4n+0.75 formula. (The fact that the Gehrels paper has over 800 published
citations testifies to the demand for simple approximate formulae.) We would of course need to
show in such a paper that the new approximate formulae do in fact approximate the above
“new” limit formulae, just like Gehrels shows that his approximate formulae do in fact correctly
approximate the “Standard/Gehrels” limits.
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ABSTRACT

Convenient tables and approximate formulae are presented for confidence limits based on Poisson and
binomial statistics. Poisson statistics apply when event rates are calculated from small numbers of observed
events, and binomial statistics apply when ratios of two different event types are calculated from small
numbers of observed events. The limits in the tables are given for all confidence levels commonly used in

astrophysics.
Subject heading: numerical methods

I. INTRODUCTION

In many areas of astrophysics it occasionally happens that
only a small number of events of interest are detected during
an observation. Examples range from the number of super-
novae seen in a given period of time from a cluster of galaxies
to the number of gamma rays detected during a source obser-
vation. If the goal is to determine quantities such as the event
rate or the ratio of different event types, then the best approach
is to repeat the measurement with a longer integration time or
a larger collection factor in order to obtain enough events for
an accurate measurement. In some cases, for one reason or
another, this is not possible or practical, and one is forced to
make the best use of the data in hand. Results are then typi-
cally quoted as upper limits at a specified confidence level or as
a measured value with error bars containing a specified con-
fidence interval. Conventionally, error bars plotted in figures
are 84.13% confidence upper and lower limits containing a
68.27% confidence interval.

The calculation of limits for small numbers of counts is
based on standard equations derived from Poisson and bino-
mial statistics. Although the equations are straightforward,
using them directly is cumbersome and involves interpolating
in tables and executing several mathematical operations.
Tables of limits for a few confidence levels have been published
(Pearson and Hartley 1966; Beyer 1966), but not all levels
commonly used in astrophysics are included. Also, I have
found that the tables most often referenced (Beyer 1966) have
inaccuracies in the last decimal place. Another shortcoming in
this subject is that approximate formulae for quick estimation
or for use in computer programs are not available. The
purpose of this paper is to present tables of Poisson and bino-
mial limits for all confidence levels commonly used in astro-
physics and to derive easy-to-use approximate formulae for
calculating the limits.

II. CONFIDENCE LIMITS FOR POISSON STATISTICS

a) Definitions and Numerical Solutions

We consider the case where n events are detected in a given
observation. Then, based on Poisson statistics, the upper limit,
A, and lower limit, 4, of confidence level CL are defined by
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=1-CL, 0]
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(see, e.g., Pearson and Hartley 1966; Beyer 1966). The lower
limit for n = 0 is 4, = 0.0. Single-sided confidence limits are
defined in equations (1) and (2) and will be used throughout
this paper. Double-sided intervals of level CL’ can be obtained
by substituting (1 + CL')/2 for CL in the equations. For
instance, if 4, and 4, are each 95% single-sided limits, then the
double-sided interval 4, to 4, has a confidence of 90%.

In the Appendix it is shown that equations (1) and (2) are
reasonable definitions of Poisson confidence limits. In particu-
lar, it is illustrated that if a large number of observers measure
a real physical rate, then at least 100 x CL% of them will
assign upper limits based on their measurements that are
greater than the real rate and at least 100 x CL% will assign
lower limits that are less than the real rate, for all rates. It is
also shown that the upper limits are the smallest they can be
and still satisfy this condition and that the lower limits the
largest they can be. The limits in equations (1) and (2) therefore
optimally satisfy the definition of confidence limits (see, e.g.,
Cramér 1945).

It is not possible to obtain exact algebraic expressions for 4,
and /, from equations (1) and (2). However, as shown in the
next section, approximate expressions can be found that are
good to a few percent. Also, for any values of n and CL, the
limits can be numerically determined to any desired accuracy.
Listed in Tables 1 and 2 are exact values for 4, and 4, at several
confidence levels for n = 0-50, determined using an iterative
numerical technique (Newton’s method) to solve equations (1)
and (2). The confidence levels that were chosen are the obvious
0.90, 0.95, 0.99, and 0.999, as well as levels corresponding to 1,
2, and 3 o limits for Gaussian statistics, namely 0.8413, 0.9772,
and 0.9987. Also, to allow common double-sided intervals to
be determined, single-sided levels of 0.975 (double-sided 0.95),
0.995 (d-s 0.99), and 0.9995 (d-s 0.999) are included.

As an example of the use of Tables 1 and 2, consider an
observation where four events are detected in 10 s. The 99%
confidence upper limit to the rate is then 1.160 s~?, and the
99% confidence lower limit is 0.082 s~!. The 99% confidence
double-sided interval (CL = 0.995 column) is 0.067-1.259 s~ 1.
The measured value with error bars corresponding to 1 ¢

Gaussian errors is 0.40+3:32s7 1,
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TABLE 1
Po1ssoN SINGLE-SIDED UPPER LIMITS

CONFIDENCE LEVEL

n 0.8413* 0.90 0.95 0.975 0.9772¢ 0.99 0.995 0.9987* 0.999 0.9995
[V 1.841 2.303 2.996 3.689 3.783 4.605 5.298 6.608 6.908 7.601
Lo 3.300 3.890 4.744 5.572 5.683 6.638 7.430 8.900 9.233 9.999
2o 4.638 5.322 6.296 7.225 7.348 8.406 9.274 10.87 11.23 12.05
K 5918 6.681 7.754 8.767 8.902 10.05 10.98 12.68 13.06 1393
4o 7.163 7.994 9.154 10.24 10.39 11.60 12.59 14.39 14.79 15.71
So 8.382 9.275 10.51 11.67 11.82 13.11 14.15 16.03 16.45 17.41
6. 9.584 10.53 11.84 13.06 13.22 14.57 15.66 17.62 18.06 19.05
T, 10.77 11.77 13.15 14.42 14.59 16.00 17.13 19.17 19.63 20.65
8., 11.95 12.99 14.43 15.76 15.94 17.40 18.58 20.69 21.16 2222
9. 13.11 14.21 1571 17.08 17.27 18.78 20.00 22.18 22.66 23.75

10.......... 14.27 1541 16.96 18.39 18.58 20.14 21.40 23.64 24.13 25.26
o 15.42 16.60 18.21 19.68 19.87 21.49 2278 25.08 25.59 26.74
120 16.56 17.78 19.44 20.96 21.16 2282 24.14 26.51 27.03 28.20
130 17.70 18.96 20.67 2223 2243 24.14 25.50 2791 28.45 29.65
4. 18.83 20.13 21.89 23.49 23.70 2545 26.84 29.31 29.85 31.08
5. 19.96 21.29 23.10 24.74 24.95 26.74 28.16 30.69 31.24 32,50
16.......... 21.08 2245 24.30 25.98 26.20 28.03 29.48 32.06 32.62 33.90
17.......... 22.20 23.61 25.50 2722 27.44 29.31 30.79 3342 33.99 3529
18.......... 23.32 24.76 26.69 28.45 28.68 30.58 32.09 34.76 35.35 36.68
19.......... 24.44 25.90 27.88 29.67 29.90 31.85 33.38 36.10 36.70 38.05
20.......... 25.55 27.05 29.06 30.89 3113 33.10 34.67 37.44 38.04 39.41
21 26.66 28.18 30.24 32.10 32.34 3435 3595 38.76 39.37 40.76
22 27.76 29.32 3141 33.31 33.55 35.60 3722 40.07 40.70 42.11
23 28.87 3045 32.59 34.51 34.76 36.84 38.48 41.38 42.02 4345
24.......... 29.97 31.58 3375 3571 3596 38.08 39.74 42.69 43.33 44.78
25, 31.07 3271 3492 36.90 37.16 39.31 41.00 43.98 44.64 46.11
26.......... 32.16 33.84 36.08 38.10 38.36 40.53 42.25 45.28 45.94 4742
27, 33.26 34.96 37.23 39.28 39.55 41.76 43.50 46.56 47.23 48.74
28 34.35 36.08 38.39 40.47 40.74 4298 44.74 47.84 48.52 50.04
29 3545 37.20 39.54 41.65 4192 44.19 45.98 49.12 49.80 51.35
30.......... 36.54 3832 40.69 42.83 43.10 45.40 4721 50.39 51.08 52.64
K] IR 37.63 39.43 41.84 44.00 44.28 46.61 48.44 51.66 52.36 53.94
320 38.72 40.54 42.98 45.17 45.46 47.81 49.67 5292 53.63 55.23
33 39.80 41.65 44.13 46.34 46.63 49.01 50.89 54.18 54.90 56.51
4. 40.89 42.76 45.27 47.51 47.80 50.21 52.11 55.43 56.16 57.79
35 4197 43.87 46.40 48.68 48.97 51.41 5332 56.69 57.42 59.06
36.......... 43.06 44.98 47.54 49.84 50.14 52.60 54.54 57.93 58.67 60.34
37 44.14 46.08 48.68 51.00 51.30 53.79 55.75 59.18 59.93 61.60
38l 45.22 47.19 49.81 52.16 52.46 54.98 56.96 60.42 61.17 62.87
39, 46.30 48.29 50.94 53.31 53.62 56.16 58.16 61.66 62.42 64.13
40.......... 47.38 49.39 52.07 54.47 54.78 57.35 59.36 62.89 63.66 65.39
41.......... 48.46 50.49 53.20 55.62 5593 58.53 60.56 64.13 64.90 66.64
42 ... 49.53 51.59 54.32 56.77 57.09 59.71 61.76 65.36 66.14 67.90
43, 50.61 52.69 55.45 5792 58.24 60.88 62.96 66.58 67.37 69.14
44.......... 51.68 53.78 56.57 59.07 59.39 62.06 64.15 67.81 68.60 70.39
45 52.76 54.88 57.69 60.21 60.54 63.23 65.34 69.03 69.83 71.63
46.......... 53.83 5597 58.82 61.36 61.69 64.40 66.53 70.25 71.06 72.88
47.......... 54.90 57.07 59.94 62.50 62.83 65.57 67.72 71.47 72.28 74.11
48.......... 55.98 58.16 61.05 63.64 63.97 66.74 68.90 72.68 73.51 75.35
49.......... 57.05 59.25 62.17 64.78 65.12 67.90 70.08 73.90 74.72 76.58
SO.......... 58.12 60.34 63.29 65.92 66.26 69.07 71.27 75.11 75.94 7781
60.......... 68.79 71.20 74.39 77.23 77.60 80.62 82.99 87.11 88.01 90.01
70.......... 79.41 81.99 85.40 88.44 88.83 92.06 94.58 98.96 99.91 102.0
80.......... 89.98 92.73 96.35 99.57 99.98 1034 106.1 110.7 111.7 1139
9.l 100.5 103.4 107.2 110.6 111.1 1147 1174 1223 123.3 1257
100.......... 1110 114.1 118.1 121.6 1221 125.8 128.8 133.8 1349 1374

# Corresponding to Gaussian statistics 1 ¢ = 0.8413, 2 ¢ = 0.9772, and 3 ¢ = 0.9987.
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TABLE 2
PoOISSON SINGLE-SIDED LOWER LIMITS

CONFIDENCE LEVEL

n 0.8413 0.90 0.95 0.975 0.9772 0.99 0.995 0.9987 0.999 0.9995
Lo, 0.173 0.105 5.13-2* 2.53-2 2.30-2 1.01-2 5.01-3 1.35-3 1.00—-3 5.00—-4
2. 0.708 0.532 0.355 0.242 0.230 0.149 0.103 529-2 4542 320-2
3o 1.367 1.102 0.818 0.619 0.569 0.436 0.338 0.212 0.191 0.150
4ol 2.086 1.745 1.366 1.090 1.058 0.823 0.672 0.465 0.429 0.355
St 2.840 2433 1.970 1.623 1.583 1.279 1.078 0.792 0.739 0.632
6.einnnn. 3.620 3.152 2,613 2.202 2.153 1.785 1.537 1.175 1.107 0.967
Teeiinn 4.419 3.895 3.285 2814 2.758 2.330 2.037 1.603 1.520 1.348
8o 5232 4.656 3.981 3454 3.391 2.906 2.571 2.068 1.971 1.768
9 6.057 5.432 4.695 4.115 4.046 3.507 3.132 2.563 2452 2.220

10.......... 6.891 6.221 5.425 4.795 4.719 4.130 3.717 3.084 2.961 2.699
... 7.734 7.021 6.169 5.491 5.409 4.771 4.321 3.628 3.491 3.202
) 8.585 7.829 6.924 6.201 6.113 5.428 4.943 4.191 4.042 3.726
13 9.441 8.646 7.690 6.922 6.828 6.099 5.580 4.772 4.611 4.269
14.......... 10.30 9.470 8.464 7.654 7.555 6.782 6.231 5.367 5.195 4.828
5. 11.17 10.30 9.246 8.395 8.291 7.471 6.893 5977 5.794 5.402
16.......... 12.04 11.14 10.04 9.145 9.036 8.181 7.567 6.599 6.405 5.990
17.......... 12.92 11.98 10.83 9.903 9.789 8.895 8.251 7.233 7.028 6.590
18.......... 13.80 12.82 11.63 10.67 10.55 9.616 8.943 7871 7.662 7.201
19.......... 14.68 13.67 12.44 11.44 11.32 10.35 9.644 8.530 8.306 7.822
20, 15.57 14.53 13.25 12.22 12.09 11.08 10.35 9.193 8.958 8.453
21 16.45 15.38 14.07 13.00 12.87 11.83 11.07 9.863 9.619 9.093
2. 17.35 16.24 14.89 13.79 13.65 12.57 11.79 10.54 10.29 9.741
23 18.24 17.11 15.72 14.58 14.44 13.33 12.52 11.23 10.96 10.40
24.......... 19.14 17.97 16.55 15.38 15.23 14.09 13.26 11.92 11.65 11.06
25, 20.03 18.84 17.38 16.18 16.03 14.85 14.00 12.62 12.34 11.73
26.......... 20.93 19.72 18.22 16.98 16.83 15.62 14.74 13.32 13.03 12.41
P 21.84 20.59 19.06 17.79 17.64 16.40 15.49 14.03 13.73 13.09
28 2274 21.47 19.90 18.61 18.45 17.17 16.25 14.75 14.44 13.78
29, 23.65 2235 20.75 19.42 19.26 17.56 17.00 15.47 15.15 14.47
30.......... 24.55 23.23 21.59 20.24 20.07 18.74 17.77 16.19 15.87 15.17
3o, 25.46 24.11 2244 21.06 20.89 19.53 18.53 16.92 16.59 15.87
320 26.37 25.00 23.30 21.89 21.71 20.32 19.30 17.65 17.32 16.58
3B 27.28 25.89 24.15 22.72 22.54 21.12 20.08 18.39 18.05 17.30
4. 28.20 26.77 25.01 23.55 23.36 21.92 20.86 19.13 18.78 18.01
350 29.11 217.66 25.87 24.38 24.19 2272 21.64 19.88 19.52 18.73
36.......... 30.03 28.56 26.73 25.21 25.03 23.53 2242 20.63 20.26 19.46
37 30.94 29.45 27.59 26.05 25.86 2433 23.21 21.38 21.00 20.19
38 31.86 30.34 28.46 26.89 26.70 25.14 24.00 22.14 21.75 20.92
9. 3278 31.24 29.33 27.73 27.53 25.96 24.79 22.89 2251 21.66
40.......... 33.70 32.14 30.20 28.58 28.38 26.77 25.59 23.66 23.26 22.40
41.......... 34.62 33.04 31.07 29.42 29.22 27.59 26.38 24.42 24.02 23.14
42 35.55 33.94 31.94 30.27 30.06 28.41 27.18 25.19 24.78 23.88
43, 36.47 34.84 32.81 3112 30.91 29.23 27.99 25.96 25.54 24.63
4.......... 37.39 35.74 33.69 31.97 31.76 30.05 28.79 26.73 26.31 25.38
45.......... 3832 36.65 34.56 32.82 3261 30.88 29.60 27.51 27.08 26.14
46.......... 39.24 37.55 35.44 33.68 33.46 31.70 30.41 28.29 27.85 26.89
47.. ... 40.17 38.46 36.32 34.53 34.31 32.53 31.22 29.07 28.62 27.65
48.......... 41.10 39.36 37.20 3539 35.17 33.36 32.03 29.85 29.40 28.42
49.......... 42.02 40.27 38.08 36.25 36.02 34.20 32.85 30.63 30.18 29.18
S50.......... 4295 41.18 38.96 37.11 36.88 35.03 33.66 31.42 30.96 29.95
60.......... 52.28 50.31 47.85 45.79 45.53 43.46 4193 39.40 38.88 37.73
70.......... 61.65 59.51 56.83 54.57 54.29 52.02 50.33 47.54 46.96 45.70
80.......... 71.07 68.77 65.88 63.44 63.13 60.67 58.84 55.81 55.18 53.80
90.......... 80.53 78.08 74.98 7237 72.04 69.41 67.44 64.18 63.51 62.02
100.......... 90.02 87.42 84.14 81.36 81.02 78.22 76.12 72.65 71.92 70.33

2 5.13—2 means 5.13 x 1072,
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b) Approximate Algebraic Expressions

The standard method for determining Poisson confidence
limits makes use of the relation between the Poisson sum and
the 2 probability function

n—1 lxe—l
x!

=1-P(*) (©)

x=0
(see, e.g., Abramowitz and Stegun 1965), where P(32|v) is the x>
probability for v degrees of freedom with y? = 21 and v = 2n.
From equation (3), the Poisson upper and lower limits of con-
fidence CL defined by equations (1) and (2) are related to the 2
probability function by

P(24,|2n + 2) = CL o)
P(2J,|2n) =1 —CL . )

Thus, 4, and 4, can be determined using tables of percentage
points of the y? distribution. This method is straightforward
but is definitely less convenient than tables of the limits them-
selves. Also, since no y? table covers all confidence levels com-
monly used, interpolations and extrapolations are often
required. Equations (4) and (5) are, however, good starting
points for developing approximate algebraic expressions for
the limits.
i) Upper Limits

Several approximate inverse relations giving y? in terms of
P(y*|v) are listed by Abramowitz and Stegun (1965). In this
section, these relations will be used to obtain several approx-
imate expressions for 4,. Their accuracy will then be compared
and a recommended numerical procedure given. All of the
equations in Abramowitz and Stegun make use of the variable
y. defined as the Gaussian integral value with the same prob-
ability as P(x?|v); ie., if P(x?|v) = a, then y, is such that
G(y,) = 2m)~ Y2 [  e~*2dt = a.In our final equations we use
the variable S = | y,|, which is the equivalent Gaussian number
of ¢ corresponding to the confidence level. Values of S for the
common confidence levels are listed in Table 3, along with
other data pertaining to the next section.

The first approximate relation is

2r Uy, +2v—1)%, (6)

which, combined with equation (4), gives

3 8243
A, R S - . 7
RN+ \/n+4+ 2 (7

Another approximate relation is

2 2\3
Zx -— — @
1 V<1 gy + Va / 9v> : )

which gives

A, ~(n+ I)I:I

1 S 3
_ . 9
om+ 1) 3 n+1} ©

A final approximate expression is obtained by expanding equa-
tion (9) and keeping only terms of order (n + 1)* where o > 0,

giving
S2+2
Avxn+S/n+1+ 3+ .

In Table 4 we compare the accuracy of equations (7), (9), and
(10) for several values of n at the two extreme confidence levels
discussed in this paper. The table lists the exact values from
Table 1 in the column under A, and gives the values from the
approximations along with (in parentheses) the percentage
error with respect to A,. The Gaussian limit n + S(n)'/? is also
given for comparison. Equation (7) is quite good for
CL = 0.8413 but becomes poor at higher confidence levels.
Equation (9) is the most complicated of the approximate
expressions but is best overall—within 3% of the true limit for
all values of n and all confidence levels considered in this paper.
Equation (10) is fair at low confidence levels but becomes very
accurate at high confidence levels where it actually does better
than equation (9) from which it was derived. Its accuracy is
better than 10% for all values of n for all confidence levels and
better than 1% forn > 4.

Recommended approximation: For applications where upper
limits good to within 10% are accurate enough, use the simple
expression in equation (10), 4, ~ n + S(n + 1)¥/2 + (82 + 2)/3.
If higher accuracy is required, use the exact upper limits for the
smallest few n and equation (10) for all others or use the more
complicated equation (9). For the special case of S = 1, the
simple expression in equation (7), A, xn+ (n + )2 + 1, is
good to better than 1.5% for all n. The Gaussian statistics limit
A, ~ n + S(n)*> becomes accurate at the few percent level only
for n > 100.

(10)

ii) Lower Limits
To obtain approximate expressions for the Poisson lower
limits, the same approximate 2 inverse relations from the last
section are used. In this case, the starting point is the relation-
ship between the Poisson confidence lower limit and the y?
probability function expressed in equation (5). Combining
equation (5) with equation (6) gives

1 Sz -1
Arxn—S - - 11
(RN /n yiREE (11)
and with equation (8) gives
1 S \?
henll—————=
. n( o 3 n) (12)

TABLE 3

DATA FOR APPROXIMATE EXPRESSIONS FOR POISSON LIMITS

CONFIDENCE LEVEL

PARAMETER 0.8413 0.900 0.950 0.975 0.9772 0.990 0.995 0.9987 0.999 0.9995
St 1.000 1.282 1.645 1.960 2.000 2.326 2.576 3.000 3.090 3.291
B 0.0 0.010 0.031 0.058 0.062 0.103 0.141 0.222 0.241 0.287
Yo —4.00 —2.50 —-2.22 —-2.19 —2.07 —2.00 —1.88 —1.85 —1.80

* Number of Gaussian o.
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TABLE 4
COMPARISON OF PoIssON UPPER LIMIT APPROXIMATE EXPRESSIONS
GAUSSIAN LiMIT EQUATION (7) EQUATION (9) EQuATION (10)
n CL S Ay Value (% Error?) Value (% Error) Value (% Error) Value (% Error)

Oennnnns 0.8413 1.0 1.841 0.000 (=) 1.866 (1.4) 1.826 (0.8) 2.000 (8.6)
| 0.8413 1.0 3.300 2.000 (39) 3.323 (0.7) 3.287 (0.4) 3414 (3.5)
2t 0.8413 1.0 4.638 3414 (26) 4.658 (0.4) 4.627 0.2) 4732 (2.0)
3 0.8413 1.0 5918 4.732 (20) 5.936 (0.3) 5.909 0.2) 6.000 (1.4)
4o 0.8413 1.0 7.163 6.000 (16) 7.179 0.2) 7.154 0.1) 7.236 (1.0)
10.......... 0.8413 1.0 14.27 13.16 (7.7) 14.28 (0.08) 14.26 (0.04) 14.32 (0.3)

100.......... 0.8413 1.0 111.0 110.0 0.9 111.0 (<) 111.0 (<) 111.0 (0.01)
O.ceennn. 0.9995 3.291 7.601 0.000 (-) 6.308 17) 7.832 (3.0) 7.568 0.4)
) SR 0.9995 3.291 9.999 4.291 (57) 8.811 (12) 10.18 (1.8) 9.931 0.7)
2ot 0.9995 3.291 12.05 6.654 495) 10.92 94) 12.20 (1.3) 11.98 (0.6)
3 0.9995 3.291 13.93 8.700 (38) 12.83 (7.9) 14.07 (1.0) 13.86 0.5
4. 0.9995 3.291 15.71 10.58 (33) 14.63 6.9) 15.83 (0.8) 15.64 (0.5)
| (L 0.9995 3.291 25.26 20.41 (19) 24.25 4.0 25.34 0.3) 25.19 (0.3)

100.......... 0.9995 3.291 1374 1329 (3.3) 136.5 0.6) 137.4 (0.02) 1374 (0.02)

2 % error = 100 x |value — 4,|/4,.
® Symbol “ < ” means less than 0.01%.

Expanding equation (12) and keeping only terms of order n%
where o > 0, results in

S?—1
/I,zn—S\/;+ 3

As will be shown below, none of the above three equations are
adequate approximations for all confidence levels discussed in
this paper. I have therefore devised a slightly more complex
expression based on equation (12) that is quite accurate for all

. (13)

n and for all confidence levels in Table 3. The equation is
1 S 3
i,zn(l——n——+ﬁny> ,

where f§ and y are free parameters that are adjusted for each
confidence level. The best values are listed in Table 3 and
shown graphically in Figure 1.

In Table 5 the accuracy of equations (11), (12), (13), and (14)
are compared. Equations (11) and (12) are possibilities for

(14)

Confidence Level

m o o >0 o
< l®) N~ I~ o o 00 O
@ o o o0 o o a0 o
l | | I [ 1 | |
I | T T
- PARAMETERS FOR POISSON _
LOWER LIMIT EQN. 14
— —_ 3
_2 b -
Y - — 2B
_3 — —
L — .l
._4 — -
’e | l 1 l ] 0
| 2 3
S

F1G. 1.—Parameters f and y from Poisson lower limit approximation, eq. (14). Dots represent values in Table 3.
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TABLE 5
COMPARISON OF PoISSON LOWER LIMIT APPROXIMATE EXPRESSIONS
GAUSSIAN LiMIT EqQuATiON (11) EQuATION (12) EqQuaTION (13) EQUATION (14)
n CL S A Value (% Error?) Value (% Error) Value (% Error) Value (% error) Value (% Error)

| D 08413 1.0 0.173 0.000 (-) 0.134 (22) 0.171 0.7) 0.000 (-) 0.171 (0.7)
2 0.8413 1.0 0.708 0.586 (17) 0.677 4.4) 0.712 (0.5) 0.586 17) 0.712 0.5)
3o 08413 1.0 1.367 1.268 (7.3) 1.342 (1.9) 1372 0.4) 1.268 (7.3) 1.372 (0.4)
4. 0.8413 1.0 2.086 2.000 (4.1) 2.064 (1.1) 2.091 0.3) 2.000 (4.1) 2.091 0.3)

100l 0.8413 1.0 6.891 6.838 (0.8) 6.878 (0.2) 6.896 (0.07) 6.838 (0.8) 6.896 (0.07)
100.......... 0.8413 1.0 90.02 90.00 (0.02) 90.01 (<)® 90.02 (<) 90.00 (0.02)  90.02 (<)
) S 09995 3291 500—-4 —229 (—) 0.608 (=) —0.009 (-) 0.986 (—-) 491—4 (1.8)
2, 09995 3291 320—2 —265 (-) 0.104 (-) 0.010 (70) 0.623 (—-) 3.17-2 0.9)
3 09995 3.291  0.150 —2.70 (-) 1.64—4 (—) 0.107 (28) 0.577 (=) 0.151 (1.0)
4. 09995 3.291  0.355 —2.58 (-) 0.085 (76) 0.304 (14) 0.695 (—) 0.358 0.8)
10.......... 0.9995 3.291  2.699 —0.41 (-) 2.182 (19) 2.646 (2.0) 2.870 6.3) 2.703 (0.1)

100.......... 09995 3291 70.33 67.09 (4.6) 69.59 (1.1) 70.30 70.37 (0.05)  70.32 (0.01)

(0.01)

® % error = 100 x |value — 4,|/4,.
® Symbol “ < ” means less than 0.01%.

CL = 0.8413 but fail for higher confidence levels. Equation (13)
is poor for all cases. Equations (14) is the most complex equa-
tion but is accurate to better than 2% for all values of n and all
confidence levels considered in this paper. For n > 10 it is
accurate to better than ~0.1%.

Recommended approximation: For all cases use equation
(14), A, = n(1 — 1/9n — S/3(n)'/? + Bn?)*, where f and y are
given in Table 3 (8 =0 for the special case of S =1). The
results are accurate to better than 2%. For the general S, the
Gaussian statistics limit A, & n — S(n)!/? becomes accurate at
the few percent level only for n > 100, although for S = 1 it is
accurate to better than 1% forn > 8.

III. CONFIDENCE LIMITS FOR BINOMIAL STATISTICS

a) Relation to Abundance Measurements

We consider next the case where an observer is measuring
two different kinds of distinguishable events. It is assumed that
the source of each event type is random, so that the number of
events of each type detected in a given observation time is
distributed according to Poisson statistics. The objective is to
obtain confidence limits on the ratio of the two event rates
based on the measurement of a small number of events. Exam-
ples of this kind of study are elemental and isotopic abundance
ratios in cosmic-ray astrophysics, spectral-line ratios in X-ray
and y-ray astronomy, and supernova type ratios in stellar
astronomy.

The joint probability function for the two event types can be
related to a combination of Poisson and binomial distribu-
tions. If n, and n, are the number of observed events of types 1
and 2, distributed according to Poisson statistics with true
rates of 4, and 4,, then the joint probability f(n,, n,) of observ-
ing n, and n, is

am — A1 An2 — A2
flny,ny) = e L LA

ny! n,!

B (/:1 + 12)n1+nze—(l1+iz) <n1 +n
- (ny + ny)!

2>p';*(1 - p)™,
(15)

where p; = A,/(4; + ;) and (","*) is the binomial coefficient
(ny + ny)!/n,! n,!. Thus, the joint probability is equal to the

1

Poisson probability for the combined rate times the binomial
probability for obtaining specifically n, and n, given that the
combined number of events observed was n,; + n,. Another
way of viewing this is as follows: a source randomly emitting
two types of events, each with its own average rate, is equiva-
lent to a source randomly emitting events of unknown type at
an average rate equal to the sum of the individual rates, with a
weighted coin flipped for each event to determine its type.

The goal in the following sections will be to find confidence
limits for p, in equation (15) or equivalently for the ratio of
event rates, r = 4,/4, = p,/(1 — p,). Binomial statistics will be
used since, as shown above, they determine the event ratios.

b) Definitions and Numerical Solutions

For a binomial distribution, the upper limit, p,,, and lower
limit, p,,, for the ratio of type 1 events to total events (type 1
plus type 2) are defined by

ni n

> <X>P’1‘u(1 —p) *=1-CL  (n,#n), (16)
x=0
np—1 n

2 ( >p§z(1 —pu)' " =CL
x=0 \X

(see, e.g., Pearson and Hartley 1966; Beyer 1966), where CL is
the single-sided confidence level of the limits and n = n; + n,.
Forn, =n(n, =0)p,, = 1.0and for n, = 0 p,; = 0.0.

Equations (16) and (17) were derived for measurements with
fixed n, which is not the case for ratios computed from two
random rates. For two random rates that are both small, these
equations give somewhat conservative limits. As an example,
for all cases with both true rates less than 5.0, the fraction of
observers with upper limits greater than the true ratio is always
more than 0.98 for CL = 0.95. The fraction does approach 0.95
for large rates, and the limits defined here do satisfy the defini-
tion of confidence limits (see Appendix) for all rates and con-
fidence levels. As far as I know, these limits are the best one can
do for abundance measurements.

As was the case for the Poisson limits, exact general alge-
braic expressions for p;, and p,;, can not be obtained from
equations (16) and (17). However, as will be discussed below,
there are exact solutions for some special cases, and general
approximate algebraic expressions can be derived. Also, for

(n, #0)  (17)
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P>l
It
o TABLE 6
§: BINOMIAL SINGLE-SIDED UPPER LIMITS?
1
:'_): CONFIDENCE LEVEL
el
:j‘g: ny n, 0.8413 0.90 0.95 0975 09772 0.99 0.995 0.9987 0.999 0.9995
E: .......... 1 0.841 0.9000 0.9500 0.9750 09772 0.9200° 0.9250 0.9287 0.9%00 0.9350
L 2 0.602 0.684 0.776 0.842 0.849 0.9000 0.9293 0.9633 0.9684 0.9776
3 0.459 0.536 0.632 0.708 0.717 0.785 0.829 0.889 0.9000 0.9206
4 0.369 0.438 0.527 0.602 0.612 0.684 0.734 0.808 0.822 0.850
5 0.308 0.369 0.451 0.522 0.531 0.602 0.653 0.733 0.749 0.781
6 0.264 0.319 0.393 0.459 0.468 0.536 0.586 0.668 0.684 0.718
7 0.231 0.280 0.348 0.410 0.418 0.482 0.531 0.611 0.627 0.662
8 0.206 0.250 0.312 0.369 0.377 0.438 0.484 0.562 0.578 0.613
9 0.185 0.226 0.283 0.336 0.343 0.401 0.445 0.520 0.536 0.570
10 0.168 0.206 0.259 0.308 0.315 0.369 0.411 0.484 0.499 0.532
100 0.0182 0.0228 0.0295 0.0362 0.0371 0.0450 0.0516 0.0639 0.0667 0.0732
.......... 1 09172 0.9487 0.9747 0.9874 0.9886 0.9%250 0.9%75 0.9%32 0.9350 0.9%75
2 0.748 0.804 0.865 0.9057 0.9102 0.9411 0.9586 0.9786 0.9816 0.9870
3 0.618 0.680 0.751 0.806 0.812 0.859 0.889 0.9291 0.9360 0.9493
4 0.524 0.584 0.657 0.716 0.724 0.778 0.815 0.868 0.878 0.898
5 0.454 0.510 0.582 0.641 0.649 0.706 0.746 0.807 0.819 0.843
6 0.400 0.453 0.521 0.579 0.586 0.643 0.685 0.750 0.763 0.789
7 0.357 0.406 0.471 0.527 0.534 0.590 0.632 0.698 0.711 0.740
8 0.323 0.368 0.429 0.482 0.489 0.544 0.585 0.652 0.665 0.694
9 0.294 0.337 0.394 0.445 0.452 0.504 0.544 0.610 0.624 0.653
10 0.270 0.310 0.364 0.413 0419 0.470 0.509 0.573 0.587 0.616
100 0.0323 0.0380 0.0461 0.0539 0.0550 0.0639 0.0713 0.0848 0.0878 0.0947
.......... 1 0.9440 0.9655 0.9830 09216 0.9224 0.9%267 0.9283 0.9355 0.9%67 0.9383
2 0.815 0.857 0.9024 0.9324 0.9357 0.9580 0.9706 0.9848 0.9870 0.9208
3 0.703 0.753 0.811 0.853 0.858 0.894 09172 0.9473 0.9524 0.9625
4 0.615 0.667 0.729 0.777 0.783 0.827 0.856 0.898 0.9060 0.9215
5 0.546 0.596 0.659 0.710 0.716 0.764 0.797 0.847 0.856 0.876
6 0.490 0.538 0.600 0.651 0.657 0.707 0.742 0.797 0.807 0.830
7 0.444 0.490 0.550 0.600 0.606 0.656 0.693 0.750 0.761 0.785
8 0.405 0.450 0.507 0.556 0.562 0.612 0.648 0.707 0.718 0.744
9 0.373 0.415 0.470 0.518 0.524 0.572 0.608 0.667 0.679 0.705
10 0.346 0.386 0.438 0.484 0.490 0.537 0.573 0.632 0.644 0.670
100 0.0449 0.0513 0.0604 0.0690 0.0702 0.0799 0.0877 0.102 0.105 0.112
.......... 1 0.9577 0.9740 0.9873 0.9%237 0.9%43 0.9275 0.9287 0.9%66 0.9375 0.9°87
2 0.853 0.888 0.9236 0.9473 0.9498 0.9673 09771 0.9882 0.9899 0.9229
3 0.757 0.799 0.847 0.882 0.886 0.9153 0.9337 0.9580 0.9621 0.9701
4 0.676 0.721 0.775 0.816 0.821 0.858 0.882 0.9170 0.9233 0.9361
5 0.610 0.655 0.711 0.755 0.761 0.802 0.830 0.872 0.880 0.897
6 0.555 0.599 0.655 0.701 0.706 0.750 0.781 0.828 0.837 0.856
7 0.508 0.552 0.607 0.652 0.658 0.703 0.735 0.785 0.795 0.816
8 0.469 0.511 0.564 0.610 0.615 0.660 0.693 0.745 0.756 0.778
9 0.435 0.475 0.527 0.572 0.577 0.622 0.655 0.708 0.719 0.742
10 0.405 0.444 0.495 0.538 0.544 0.588 0.621 0.674 0.685 0.709
100 0.0566 0.0637 0.0736 0.0828 0.0840 0.0942 0.103 0.117 0.121 0.128
........... 1 0.9660 0.9791 0.9898 0.9%249 0.9%54 0.9%80 0.9300 0.9373 0.9380 0.9400
2 0.879 0.9074 0.9372 0.9567 0.9588 0.9732 0.9813 0.9204 0.9%17 0.9242
3 0.794 0.830 0.871 0.9010 0.9044 0.9292 0.9447 0.9650 0.9684 0.9751
4 0.720 0.760 0.807 0.843 0.847 0.879 0.9001 0.9298 0.9352 0.9460
5 0.658 0.699 0.749 0.788 0.793 0.829 0.854 0.891 0.897 09117
6 0.605 0.646 0.696 0.738 0.743 0.782 0.809 0.851 0.859 0.875
7 0.559 0.599 0.650 0.692 0.697 0.738 0.767 0.812 0.821 0.839
8 0.519 0.559 0.609 0.651 0.656 0.698 0.728 0.775 0.784 0.804
9 0.485 0.523 0.573 0.614 0.619 0.661 0.691 0.740 0.750 0.771
10 0.455 0.492 0.540 0.581 0.586 0.627 0.658 0.707 0.717 0.739
100 0.0678 0.0754 0.0859 0.0956 0.0968 0.108 0.116 0.132 0.135 0.143
.......... 1 09716 0.9826 09215 0.9%58 0.9%262 0.9%83 0.9%16 0.9377 0.9383 0.9417
2 0.896 0.9212 0.9466 0.9633 0.9651 0.9773 0.9842 0.9219 0.9230 0.9%51
3 0.821 0.853 0.889 0.9148 09177 0.9392 0.9525 0.9700 0.9730 0.9787
4 0.754 0.790 0.831 0.863 0.867 0.895 09132 0.9391 0.9438 0.9532
5 0.695 0.733 0.778 0.813 0.817 0.850 0.872 0.9041 0.9102 0.9227
6 0.644 0.682 0.729 0.766 0.771 0.806 0.831 0.868 0.875 0.890
7 0.600 0.638 0.685 0.723 0.728 0.765 0.791 0.832 0.840 0.857
8 0.561 0.598 0.645 0.684 0.689 0.727 0.755 0.798 0.806 0.824
9 0.526 0.563 0.610 0.649 0.653 0.692 0.720 0.765 0.774 0.793
10 0.496 0.532 0.577 0.616 0.621 0.660 0.688 0.734 0.743 0.763
100 0.0785 0.0865 0.0975 0.108 0.109 0.120 0.129 0.145 0.148 0.156

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1986ApJ...303..336G

CONFIDENCE LIMITS

343

TABLE 6—Continued

CONFIDENCE LEVEL

ny n, 0.8413 0.90 0.95 0.975 0.9772 0.99 0.995 0.9987 0.999 0.9995
6.l 1 0.9756 0.9851 0.9%27 0.9264 0.9%67 0.9%86 0.9%28 0.9°81 0.986 0.9429
2 0.9097 0.9314 0.9536 0.9681 0.9697 0.9803 0.9863 0.9230 0.9240 0.9257
3 0.842 0.871 0.9023 0.9251 0.9278 0.9467 0.9584 0.9737 0.9763 0.9814
4 0.780 0.812 0.850 0.878 0.882 0.9068 0.9232 0.9462 0.9504 0.9587
5 0.725 0.759 0.800 0.833 0.836 0.866 0.886 0.9146 0.9201 0.9312
10 0.531 0.565 0.609 0.646 0.650 0.687 0.713 0.756 0.764 0.783
100 0.0889 0.0972 0.109 0.119 0.121 0.132 0.141 0.157 0.161 0.169
T, 1 0.9786 0.9869 0.9236 0.9268 0.9271 0.987 0.9337 0.9°83 0.9387 0.9437
2 0.9199 0.9392 0.9590 0.9719 0.9732 0.9826 0.9879 0.9238 0.9%47 0.9%62
3 0.858 0.884 0.9127 0.9333 0.9356 0.9525 0.9630 0.9767 0.9790 0.9834
4 0.801 0.831 0.865 0.891 0.894 0.9163 0.9312 0.9518 0.9556 0.9630
5 0.750 0.781 0.819 0.848 0.852 0.879 0.897 0.9230 0.9279 0.9380
10 0.562 0.594 0.636 0.671 0.675 0.709 0.734 0.774 0.782 0.800
100 0.0989 0.108 0.119 0.130 0.132 0.143 0.153 0.169 0.173 0.181
8. 1 0.9810 0.9884 0.9%43 0.9272 0.9274 0.9289 0.9%44 09385 0.9°89 0.9%44
2 0.9280 0.9455 0.9632 0.9748 0.9760 0.9845 0.9891 0.9%44 0.9%52 0.9%66
3 0.872 0.895 0.9212 0.9398 0.9419 0.9572 0.9667 0.9790 0.9811 0.9851
4 0.819 0.846 0.877 0.9008 0.9035 0.9241 0.9376 0.9564 0.9598 0.9665
5 0.770 0.799 0.834 0.861 0.865 0.889 0.9058 0.9299 0.9344 0.9436
10 0.588 0.620 0.659 0.692 0.697 0.729 0.753 0.790 0.798 0.814
100 0.109 0.118 0.130 0.141 0.142 0.154 0.164 0.181 0.184 0.193
9 1 0.9829 0.9895 0.9%49 09275 0.9277 0.9°00 0.9%50 0.9%86 0.9400 0.9*50
2 0.9347 0.9505 0.9667 0.9772 0.9783 0.9859 0.9202 0.9%50 0.9257 0.9270
3 0.883 0.9043 0.9281 0.9451 0.9471 0.9610 0.9697 0.9809 0.9828 0.9864
4 0.833 0.858 0.887 0.9091 09116 0.9305 0.9429 0.9601 0.9632 0.9694
5 0.787 0.815 0.847 0.872 0.875 0.898 0.9134 0.9356 0.9398 0.9483
10 0.612 0.642 0.680 0.711 0.715 0.746 0.768 0.804 0.811 0.826
100 0.118 0.127 0.140 0.151 0.152 0.165 0.174 0.191 0.195 0.204
10.......... 1 0.9844 0.9205 0.9%53 0.9277 0.9279 0.9%09 0.9354 0.9%88 0.9*09 0.9455
2 0.9402 0.9548 0.9695 0.9791 0.9802 0.9872 09210 09254 0.9%261 0.9%72
3 0.892 0.9120 0.9340 0.9496 0.9514 0.9642 0.9722 0.9825 0.9842 0.9876
4 0.846 0.869 0.896 0.9161 0.9185 0.9360 0.9474 0.9633 0.9662 0.9719
5 0.802 0.828 0.858 0.882 0.885 0.9056 0.9199 0.9405 0.9444 0.9522
6 0.762 0.790 0.822 0.848 0.851 0.875 0.891 0.9159 0.9206 0.9302
7 0.726 0.754 0.788 0.816 0.819 0.845 0.863 0.891 0.896 0.9071
8 0.692 0.721 0.756 0.785 0.788 0.816 0.835 0.865 0.871 0.884
9 0.661 0.690 0.726 0.756 0.759 0.788 0.808 0.840 0.847 0.860
10 0.633 0.662 0.698 0.728 0.732 0.761 0.782 0.816 0.823 0.837
100 0.127 0.137 0.149 0.161 0.162 0.175 0.185 0.202 0.206 0.214
100.......... 1 0.983 0.9290 0.9%49 09375 0.9377 0.9400 0.950 0.9487 0.9°01 0.9°50
2 0.9%30 0.9248 0.9%65 0.9276 0.9%77 0.9%85 0.9290 0.9°48 0.9355 0.9°69
3 0.9867 0.9893 0.9220 0.9240 0.9242 0.9257 0.9%67 0.9%79 0.9281 0.9%85
4 0.9799 0.9831 0.9868 0.9894 0.9897 0.9220 0.9235 0.9255 0.9258 0.9%265
5 0.9728 0.9767 0.9811 0.9844 0.9847 0.9877 0.9896 0.9223 0.9228 0.9239
6 0.9656 0.9700 0.9751 0.9789 0.9794 0.9829 0.9853 0.9887 0.9894 0.9%07
7 0.9584 0.9632 0.9689 0.9733 0.9738 0.9778 0.9806 0.9847 0.9855 0.9871
8 0.9512 0.9564 0.9626 0.9675 0.9681 0.9726 0.9757 0.9804 0.9813 0.9832
9 0.9439 0.9496 0.9562 0.9615 0.9622 0.9671 0.9706 0.9759 0.9769 0.9791
10 0.9367 0.9427 0.9498 0.9555 0.9562 0.9616 0.9654 09712 0.9723 0.9747
100 0.538 0.548 0.560 0.571 0.573 0.584 0.593 0.607 0.610 0.617

@ Upper limit for ratio type 1 event to type 1 + type 2. Calculate lower limit from this table with lower limit (n,, n,) = 1 — upper limit

(n,, ny).
5 0.9200 means 0.9900; and in general for 9".

any specific values of ny, n,, and CL, exact numerical solutions
can be computed to arbitrary accuracy.

Table 6 lists exact numerically determined values for p,, at
the previously chosen confidence levels for a number of values
of n, and n,. A separate table is not required for the lower
limits because they can be simply obtained from the upper
limits. The relationship between the two, derived from equa-
tions (16) and (17), is

pu=1-p,,, (18)

where p,, is the upper limit for the ratio of type 2 events to
total events and can be obtained from Table 6 by switching n,
and n,. For example, if the observed number of events are
n, = 6 and n, = 4, the best guess for the ratio of type 1 to total
is 0.6, and the 99% confidence lower limit is 1 minus the upper
limit from the table for n; =4, n, =6, or 1 — 0.782 = 0.218.
The 99% confidence upper limit is 0.907 directly from Table 6,
and the 99% confidence double-sided interval (CL = 0.995
column) is 0.191-0.923.

In many cases, the quantity of interest is the ratio of type 1 to
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type 2 event, r,,, instead of type 1 to total. The upper and
lower limits for r,, are related to p,, and p,, by

plu
= 19
Fi2u 1 _ P1u > ( )
1—
Py = Pu - P2y ) (20)
1—py P2y

Using the above example of n; = 6 and n, = 4, the best guess
for ry, is 1.5, and the 99% confidence upper and lower limits
(single-sided) are 9.73 and 0.279.

c) Algebraic Expressions

There are two special cases where exact expressions for p,,
can be derived from equation (16). These are

CL Y/ +n2) (n2 = 1)
Pra= {1 —(1—-CL"  (1,=0)

Lower limits for n; = 1 and n, = 0 can be obtained from these
expressions using equation (18). For instance, p;(n, = 0) =
(1 — CL)Ym,

For other values of n, and n,, we make use of the relation
between the binomial sum and the incomplete beta function,
I(pla, ) = I (%, B),

) (Z)p*u —pr = lplen—at ) (@22)

X=a

21

(see, e.g., Abramowitz and Stegun 1965). Combining this rela-
tion with equations (16) and (17) gives

I(py Iny +1,n,) =CL, (23)
I(pylny, my; +1)=1-CL. (24)

Thus, p,, and p,;; can be obtained using tables of percentage
points of the incomplete f-function (see, e.g., Beyer 1966) in the
same manner that y? tables are used to give Poisson limits. As
with the Poisson limits, the technique is straightforward but
cumbersome since several algebraic steps are involved and, in
many cases, interpolations in the tables are required.

Equation (23) is useful for developing an approximate
expression for p;,. An approximate inverse function for the
incomplete f-function is given by Abramowitz and Stegun
(1965) as follows: if I(x,|e, f) = 1 — a and y, is defined such
that G(y,) = a [see § I1b(i)], then

o

STy 29
where "
_ydht4) 1 1 5 2
v T o mo i\ e wm)
DY (L S B
S \2p-1"20a—-1) °
and
2
ya_3
A==
6

Combining equations (23) and (25), adding a correction term,
and using the variable S defined in § IIb(i) (see Table 3), we
derive an approximate expression for p,,,,

(g + 1) + en,

T+ e +n, (26)

1lu

Vol. 303

where

W_S(h-{-l)l/z_l_ (N ,.5 2
- h 2n, — 1 2ny + 1 6 3h)’

h= o — I N
T2y, —1 " 2ny4+1)
§2-3
6 b

A=

and
€ =0.64(1 — S)e ™.

I was not able to find a simpler expression than equation (26)
that is generally useful for all confidence levels and all values of
n, and n,. For cases where equations (21) do not apply (i.e., for
n, > 2 and n, > 1), equation (26) gives upper limits accurate to
better than 4% for all confidence levels. If n; > 4 and n, > 4,
equation (26) is accurate to better than 1%. These two percent-
age accuracies also hold for 1 — p,,, which is the quantity used
to calculate lower limits. In the Gaussian limit of large n; and
n,, the upper limit is given by

n, S\/nin,
(ny + "2)3/2 .

This expression becomes accurate at the 1% level only for n,
and n, both greater than ~ 50.

Recommended expressions: For ny =0 or n, =1, use the
exact equations (21) for the binomial upper limits. For other
values of n; and n, use equation (26), which gives 4% accuracy.
Calculate the lower limits from these upper limit expressions
using p,; = 1 — p,,, Where p,, is the upper limit with n, and n,
switched. This relationship combined with equations (21) gives
exact lower limits for n; =1 or n, =0 and combined with
equation (26) gives lower limits accurate to within 4% for all
other values.

P = (27)

n; +n,

IV. SUMMARY

Poisson statistics apply when event rates are calculated from
small numbers of observed events. For n observed events, the
single-sided upper limit, 4,, and single-sided lower limit, 4,, of
confidence level CL are given by equations (1) and (2). Previous
techniques for obtaining actual limit values from these equa-
tions were cumbersome. This paper has presented tables of
upper and lower limits (Tables 1 and 2) for n = 0-50 for all
common confidence levels used in astrophysics. Also, conve-
nient approximate expressions for 4, and 4, were developed,
the most useful of which are 1, ~ n + S(n + 1)1/ + (S + 2)/3
(good to better than 10% for all n and CL and better than to
1% for n > 4) and A, ~ n[1 — 1/9n — S/3(n)*/? + pn"]® (good
to better than 2% for all n and CL), where S, f8, and y are given
in Table 3.

Binomial statistics apply when ratios of rates of two different
event types are calculated from small numbers of observed
events. For n; observed events of type 1 and n, of type 2, the
single-sided upper limit, p,,,, and single-sided lower limit, p,,, of
confidence level CL to the ratio of type 1 event rate to type 1
plus type 2 are given by equations (16) and (17). Again, in this
case, previous techniques for obtaining values from these equa-
tions were cumbersome. Considering upper limits first, Table 6
lists values for p,, for a number of small n, and n, for all
common confidence levels used in astrophysics. There are two
special cases with exact expressions for the upper limits: p,, =
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CLY"*m (n, = 1) and p;, = 1 — (1 — CL)'/" (n, = 0). Theap-
proximate expression in equation (26) gives values for p,,
accurate to better than 4% for all other n, and n,, and to
better than 1% for n, > 4 and n, > 4. Lower limits can be
obtained directly from the upper limits in the table or in the
above equations by taking 1 minus the upper limit value, for n,
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I greatly appreciate the comments and advice of Martin H.
Israel. This paper is a development from an unpublished report
by Dr. Israel, in which equations (7) and (11) were derived.
Thanks are also due to William A. Wheaton for useful dis-
cussions concerning Poisson statistics. I am grateful for E.
Schronce for typing the manuscript of this paper.

and n, exchanged.

APPENDIX
NUMERICAL VERIFICATION OF POISSON LIMIT EQUATIONS

The purpose of this appendix is to demonstrate that the Poisson upper and lower limits defined by equations (1) and (2) in § II
satisfy the definition of confidence limits and do so in an optimum manner. To simplify the discussion we will first consider only
upper limits and then generalize the results to include lower limits.

For a quantity with a continuous distribution function such as a Gaussian distribution, upper limits are defined to be confidence
limits of confidence level CL if they satisfy the following condition; for a large number of observers measuring a given physical
quantity (with measurements distributed about the true value according to the distribution function) and each observer assigning an
upper limit based on his or her measured value, 100 x CL% of them will have upper limits greater than the true value (see, e.g.,
Cramér 1945). For a quantity with a discrete distribution function, such as a Poisson distribution, it is not possible to generate
upper limits that satisfy this condition for all parameter values, so the definition becomes: at least 100 x CL% of the observers have
upper limits greater than the true value. The lower limit condition is that at least 100 x CL% of the observers have lower limits less
than the true value.

Calculations have been performed to verify that the Poisson upper and lower limits in equations (1) and (2) satisfy this definition
of confidence limits. A finely spaced sample of assumed true event rates, 4,, was chosen. For each 4,, a distribution of observed values
was then determined from the Poisson distribution function

n
Ae

n!

- At

P(n) =

(A1)

For each observed value, upper and lower limits of confidence level 0.8413 (corresponding to 1 ¢ Gaussian limits) were obtained
from Tables 1 and 2. A tally was then taken of all observed values to determine the fraction of observers with upper limits greater
than the true rate and the fraction with lower limits less than the true rate. The results are plotted as functions of true rate in Figure
2. As expected for a discrete distribution, the fractions vary as functions of true rate, dipping to exactly 0.8413 each time the true rate

T T T T [ T I I T | T T T T 'r T T T T I

(a) OBSERVERS WITH UPPER LIMIT > A,

1.0 —

09+ —

0.8413—
0.8 -

07 b + + + Il " + + } | N " 4 3 B I 4 4 —
. -+ t T + t T t t t t t + + + T

(b) OBSERVERS WITH LOWER LIMIT < A;

Fraction of Observers
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FI1G. 2.—FTraction of observers with (a) upper limit greater than the true rate 4, and (b) lower limit less than 4,, as functions of 4,. For all values of 4,, the fraction is
greater than or equal to the confidence level of 0.8413.
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passes one of the limit values. The size of the variation decreases with increasing 4,, approaching a constant value of 0.8413 in the
limit. This is as expected since the discrete Poisson distribution approaches the continuous Gaussian distribution in the limit of
large 4,. The confidence limit definitions are satisfied for all rates; at least 84.13% of the observers have upper limits greater than the
true rate and lower limits less than the true rate, for all 4,. The limits are optimum in the sense that the fractions are exactly 0.8413 at
some discrete values of the true rate. If any one of the upper limits in Table 1 were decreased or lower limits in Table 2 increased, the
fraction would dip below 0.8413 for some true rate.
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