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This report provides analytic calculations of angular and position-space dis-
tributions of the output flux from a diffused planar light source, one example
being a light source, such as a laser or LED, which is shone through a flat
sheet of translucent plastic. Both simple small-angle scattering calculations,
and more complex large-angle scattering formulae, are provided. Compar-
isons of these calculated analytic formulae with results from simple numerical
Monte Carlo simulations are additionally provided.
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1 Initial Assumptions and Examples

When performing analytical, and even numerical, calculations of photon scat-
tering and absorption in a macroscopic medium, clearly a number of assump-
tions must be made in order to develop a model and perform such calcula-
tions. Three scattering regimes exist, in which the scattering body is respec-
tively a) much smaller than, b) of a similar size to, and c) much larger than,
the wavelength of the light being scattered; these are respectively known as
a) Rayleigh scattering, b) Mie scattering, and c) Rayleigh-Gans-Debye scat-
tering. We begin by briefly providing the results of scattering in each of the
three regimes, noting that Rayleigh and Mie scattering (but not Rayleigh-
Gans-Debye) are both applicable to the physical case at hand (a sheet of
white plastic that both scatters and absorbs light passing through it).

In addition to typical physical approximations (such as the small angle
approximation, and an assumption that scattering angles are Gaussian) we
shall use at various points (but certainly not universally, we will carefully
note each approximation we use in any given calculation) — we will exten-
sively utilize two approximate models for the optical behaviour of a sheet
of diffusive material, which will be denoted as the “succession-of-very-thin-
layers” approximation and the “scattering centres” approximation. These
two approximate models are described in sections 1.2 and 1.3, each with an
example calculation utilizing the given model.

1.1 Scattering regimes: Rayleigh scattering,

Mie scattering, and Rayleigh-Gans-Debye

scattering

1.2 The “succession-of-very-thin-layers” (SOVTL)

approximation

We first consider diffusive photon scattering in the SOVTL approximation
as shown in Fig. 1.1 at the top of the following page.

Consider non-absorptive scattering in this approximation, where each of
the scattering angles, as described in the figure caption as having RMS equal
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Figure 1.1: The “succession-of-very-thin-layers” (SOVTL) approximation to
photon scattering in a diffusive medium. Photons in the beam can scatter at
the location of each of the thin layers in the medium. We let the RMS angle of
scattering for each very thin layer of thickness dx— with an example scatter

being given by φsc above — be φRMS

√

dx
t0
, where φRMS and t0 are material-

dependent parameters. The (signed) sum of all scattering angles prior to
φsc is denoted as Φsc. The distance dy is the projected scattering distance
on the upper surface of the medium due only to the single scatter φsc. If
we are including absorption effects, we may also let the probability of non-
absorption in a given layer be e−dx/τ , where τ is another material-dependent
parameter.

to φRMS

√

dx
t0
, is additionally small (i.e.: φRMS

√

dx
t0

≪ π/2) and is Gaussian-

distributed with mean 0. Let us calculate 1) the RMS size of the output
beam, i.e. the distribution of output positions of photons exiting the upper
surface of the scattering medium, and also 2) the distribution of output angles
of these same exiting photons.

The projected scattering distance dy from a given scatter from a layer at
position xmust equal (s−x)[tan(Φsc+φsc)−tan(Φsc)], which is approximately
equal to (s−x)[Φsc+φsc−Φsc] = (s−x)φsc, since we are assuming all φsc, and
thus Φsc, are small. Thus, if we consider the distribution of possible scattering
distances dy due to the scatter at x, the variance of that distribution var(dy)
must equal (s− x)2var(φsc), since we are treating s and x as constants here.
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We know (per the SOVTL approximation) that var(φsc) = φ2
RMS

dx
t0
, and thus

var(dy) = (s−x)2var(φsc) = (s−x)2φ2
RMS(

dx
t0
). We would like to calculate 1)

var(y), where y =
∑

layers
dy =

∫ x=s
x=0 dy; as the square root of var(y) will be the

RMS size of the output beam, and also 2) var(
∑

layers
φsc). We have that var(y)

= var[
∑

dy] = var[
∫

dy]. From the “Bienaymé formula” (see Appendix A
for a proof), we have that var[

∑

i
xi] =

∑

i
var(xi) for any set of uncorrelated

variables xi, thus var(y) = var[
∫

dy] =
∫

var(dy) =
s
∫

0
(s − x)2φ2

RMS(
dx
t0
) =

φ2

RMS

t0

s
∫

0
(s − x)2dx =

φ2

RMS

t0

[

−1
3
(s− x)3

]s

0
=

φ2

RMS
s3

3t0
. Thus, 1) the RMS size of

the output beam =
√

var(y) must be the square root of this, i.e. φRMSs
3/2

√
3t0

.

To find 2), we use Bienaymé again and thus note that var(
∑

layers
φsc) =

∑

layers
var(φsc) =

∫ x=s
x=0 var(φsc). This is given by

∫ x=s
x=0 φ

2
RMS(

dx
t0
) =

φ2

RMS

t0

∫ x=s
x=0 dx =

φ2

RMS
s

t0
. Thus the standard deviation of the output angles is the square root

of this, i.e. φRMS

√

s
t0
.

Formulae for angular and spatial output distributions for more complex
cases than the above in the SOVTL approximation will be calculated in
Chapters 2 and 3.

1.3 The “scattering centres” (SC) approxi-

mation

We next consider diffusive photon scattering in the SC approximation as
shown in Fig. 1.2 below:

Consider non-absorptive scattering as in the previous section, where each
of the scattering angles is small (i.e.: φRMS ≪ π/2) and is Gaussian-distributed
with mean 0. We calculate (as above in the SOVTL approximation) 1) the
RMS size of the output beam, and 2) the distribution of output angles of the
same exiting photons.

The projected scattering distance dy from a given scatter from a centre at
position x is (as with SOVTL) approximately equal to (s−x)φsc. Thus, if we
consider the distribution of possible scattering distances dy due to the scatter
at x, the variance of that distribution var(dy) must equal (s− x)2var(φsc) =
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Figure 1.2: The scattering centres (SC) approximation to photon scattering.
Photons in the beam can scatter at the random location of each of the scat-
tering centres in the medium. We let the mean number of scattering centres
per unit area be n (with ns2 ≫ 1). Let the RMS angle of scattering for each
centre be φRMS, and let the (circular) scattering cross-section of each centre
be t0. We initially consider scattering to be impact parameter independent
within the circular cross-section, and to have a Gaussian scattering angle
distribution.

(s− x)2φ2
RMS. Using Bienaymé here as well, we have that var(y) = var[

∑

dy]

=
∑

var(dy) =
∑

(s − x)2φ2
RMS =

s
∫

0
(s − x)2φ2

RMSδidx, where δi represents

the number of centres hit (or the “chance of hitting a centre”) per the short

distance of travel dx. This quantity δi will equal (length of travel)×t0×n
dx

. The
length of travel will equal dx

cosΦsc
, where Φsc is the sum of all scattering angles

φsc for all scatters prior to the scatter under consideration. Thus we have
that δi = t0×n

cos
∑

φsc

. Using the small angle approximation, cos
∑

φsc ≈ 1, thus

var(y) ≈
s
∫

0
(s − x)2φ2

RMSt0ndx = φ2
RMSt0n

[

−1
3
(s− x)3

]s

0
=

φ2

RMS
t0ns3

3
. Thus,

1) the RMS size of the output beam = φRMS

√

t0ns3

3
.

To find 2), we use Bienaymé again and thus note that var(
∑

φsc) =
∑

var(φsc) =
∫ x=s
x=0 var(φsc) =

∫ x=s
x=0 φ

2
RMSδidx = φ2

RMSt0n
∫ x=s
x=0 dx = φ2

RMSt0ns.
Thus the standard deviation of the output angles is the square root of this,
i.e. φRMS

√
t0ns.
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1.4 Three spatial dimensions, and the observer’s

perspective
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2 Calculations of Small-Angle Scat-
tering Formulae

2.1 Deviation from normal incidence angle

2.2 Calculation using non-projected “δy” rather

than dy

2.3 Adding absorption

2.4 Impact-parameter-dependent SC approx-

imation scattering

2.5 Initial considerations for non-Gaussian scat-

tering: the example of Rayleigh scatter-

ing
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3 Calculations of Large-Angle Scat-
tering Formulae

3.1 Non-Gaussian scattering redux

3.2 Usage of Bayes’ Theorem

3.3 Large-angle scattering with absorption
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4 A Toy Monte Carlo Simulation and
Its Results

4.1 Description of the Toy MC

4.2 Results with Gaussian scattering

4.3 Results with Rayleigh scattering
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5 Comparison of Analytic Calculation
Formulae with Toy Monte Carlo Re-
sults
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A Some of the Necessary Input For-
mulae

A.1 A brief proof of the Bienaymé formula

We would like to show that

var

[

n
∑

i=1

Xi

]

=
n
∑

i=1

[var(Xi)] (A.1)

for n uncorrelated variables Xi, which is known as the Bienaymé formula.
We start by noting that the definition of the variance var(X) is E[(X −

E(X])2], where E[X] is the expectation value of the variableX. Now consider
the variance of the sum of two uncorrelated variables X and Y , i.e. var(X +
Y ). We have that

var(X + Y ) = E[(X + Y − E[X + Y ])2] (A.2)

by definition. Since X and Y are uncorrelated, we note that E[X + Y ] =
E[X] + E[Y ], and thus the above equals

E[(X + Y − E[X]− E[Y ])2] = E[(X − E[X] + Y − E[Y ])2] =

E[(X − E[X])2] + E[(Y − E[Y ])2] + 2E[(X − E[X])(Y − E[Y ])]. (A.3)

We note that since X and Y are uncorrelated, X−E[X] and Y −E[Y ] must
be uncorrelated as well, and thus

E[(X − E[X])(Y − E[Y ])] = E[(X − E[X])]E[(Y − E[Y ]). (A.4)

But

E[(X − E[X])] = E[X]− E[E[X]] = E[X]− E[X] = 0, (A.5)

which is also true for E[(Y − E[Y ]). Thus,

var(X + Y ) = E[(X −E[X])2] +E[(Y −E[Y ])2] = var(X) + var(Y ). (A.6)
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Since the above is true for any two uncorrelated variables, we can just use
induction to show that it works for any number n of uncorrelated variables,
and thus

var

[

n
∑

i=1

Xi

]

=
n
∑

i=1

[var(Xi)] . (A.7)

A.2 The moments and bivariate moments of

Gaussian distributions
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B A Brief List of the Important Re-
sults Found
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