Using Particle Physics to Understand the

Justin Albert Univ. of Victoria

CERN July 4th 2012 (ATLAS and CMS) *"A new particle of mass 125 GeV"*

Atoms and chemistry

- Discovery of the proton (1918) There are particles of positive charge inside nuclei. (Discovered via scattering of "alpha decays.")
- Helps explain periodic table
 Atoms of different elements have
 different number of protons in nucleus

Number protons = number electrons (Z). Determines chemical properties.

• Discovery of the neutron (1932) Uncharged particle in nucleus. Explains atomic masses and isotopes. What holds nucleus together???

Strong nuclear force (1934)

- New force >> electromagnetic
- Independent of electric charge (p+, n)
- Extremely short range
- Quantum theory
- **#** New particle associated with force
- Acts on protons and neutrons

Yukawa pion π^- , π_{0} , π^+

Discovered 1947 (cosmic rays)

Weak nuclear force (1934)

- Radioactive decay of nucleus
- Increases number of protons in nucleus!
- **#** Neutrons changing to protons?
- Beta decay of the neutron

 $n \rightarrow p^+ + e^- + v$

- **#** New particle: neutrino
- ♯ Discovered 1956
- **#** Fermi's theory of the weak force
- **#** Four interacting particles

Enrico Fermi

Four forces of nature (1930s)

Force of gravity

Long range Holds cosmos together

- # Electromagnetic force
 Electricity + magnetism
 - Holds atoms together
- Strong nuclear force
 Holds nucleus together
- Weak nuclear force

Responsible for radioactivity (Fermi)

New elementary particles (1940-50)

Particle accelerators

Cosmic rays

$$\pi^+ \rightarrow \mu^+ + v$$

Pions, muons, neutrinos, antiparticles

High-energy physics

- Accelerate charged particles to high velocity
 High voltage
- Collisions
- High energy density
- New particles observed
- Not 'inside' original particles

 $m = E/c^2$

 $E = mc^2$

The energy of the colliding proton and antiproton is transformed into the masses of the much more massive top and antitop quarks.

Particle Zoo (1950s, 1960s)

BARYONS		MESONS		LEPTONS		PHOTON	
Symbol	Charge	Symbol	Charge	Symbol	Charge	Symbol	Charge
р	+1	π+	+1	e-	-1	γ	0
p	-1	π-	-1	e+	+1		
n	0	π°	0	υε	0		
Δ	0	К+	+1	$\overline{\upsilon}_e$	0		
		к-	-1				
		К°	0				

Anti-particles

- Dirac equation for the electron
- Twin solutions
- Negative energy values?
- Particles of opposite charge (1928)
- Anti-electrons (detected 1932)
- Anti-particles for all particles
- Energy creates matter and anti-matter
 Why is the universe made of matter?

Paul A.M. Dirac 1902-84

New model: Quarks (1964)

<u>Too many particles</u>

- Protons not fundamental
- **#** Made up of smaller particles
- New fundamental particles*Quarks (fractional charge)*
- Hadrons: particles containing quarksBaryons (3 quarks) mesons (2 quarks)

<u>Prediction of Ω^{-} </u>

Gell-Mann, Zweig

QuarkTheory

up quark

up quark

down guark

Proton

Veutron Nucleus

Finding Quarks

Stanford/MIT experiments in 1969

- Scattering experiments (very similar to Rutherford scattering)
- Three centres of mass inside proton
- **#** Strong force = inter-quark force!
- Defining property = colour
- Strange behaviour
- Quark confinement

The energy required to break apart the proton far exceeds the <u>pair production energy</u> of a quarkantiquark pair

Six quarks (1970s – 1990s)

- Six different quarks
 (u,d,s,c,b,t)
- **μ** Six corresponding leptons (e, μ, τ, v_e , v_μ , v_τ)
- **#** Gen I: all of ordinary matter
- Gen II, III why are they there? Why 3?

New periodic table

Bosons and the Standard Model

Bosons: particles associated with forces

- **#** Electromagnetic force mediated by *photons*
- Strong force mediated by gluons
- Weak force mediated by W and Z bosons
- Problems constructing theory of weak force...
- **#** *EM* + *weak*: single interaction above 100 GeV
- # Quantum field causes symmetry breaking
- **#** Separates *EM*, weak interactions
- # Endows W, Z bosons with mass
- Called the <u>Higgs field</u>

Satyendra Nath Bose

The Standard Model (1970-90s)

- Strong force = quark force (QCD)
- EM + weak force = electroweak force
- Higgs field causes e-w symmetry breaking
- **#** Gives particle masses
- Matter particles: fermions (1/2 integer spin)

Experimental tests

- Top, bottom , charm, strange quarksLeptons
- **#** W^{+-}, Z^0 bosons

Higgs boson outstanding

The Higgs field

- # Electro-weak symmetry breaking
- # Mediated by scalar field
- Higgs field
- # Generates mass for W, Z bosons

W and Z bosons (CERN, 1983)

Peter Higgs

Kibble, Guralnik, Hagen, Englert, Brout

- # Generates mass for all massive particles
- # Associated particle : scalar boson
- Higgs boson

Particle masses not specified

The Higgs field

- Particles acquire mass by interaction with the field
- Some particles don't interact (massless)
 Photons travel at the speed of light
- Heaviest particles interact most
 Top quarks
- Self-interaction = Higgs boson

Mass not specified by SM

II The Large Hadron Collider

- Particle accelerator (8TeV)
- High-energy collisions (10¹²/s)
- Huge energy density
- Create new particles

 $m = E/c^2$

- Detect particle decays
- Four large particle detectors

 $E = mc^2$

How?

- Two proton beams
- **E = (4 + 4)** TeV (now is (6.5 + 6.5) TeV)
- ♯ 10¹² collisions/sec
- Ultra-high vacuum
- **#** Low temp: 1.6 K
- Superconducting magnets

LEP tunnel: 27 km Total "Integrated luminosity" (up to now): ~ 150 fb⁻¹

Relative beam sizes around IP1 (Atlas) in collision

Around the ring at the LHC

- Nine accelerators
- Cumulative acceleration
- Velocity increase
- $K.E = 1/2mv^2$
- Effective mass increase x8000

Start the protons out here

Particle detectors

Particle detection

- Tracking device
 Measures particle momentum
- CalorimeterMeasures particle energy
- Identification detector
 Measures particle velocity
 Cerenkov radiation

ATLAS

III A Higgs at the LHC?

Search for excess events

Mass not specified?

- **#** Close windows of possibility
- # 120-160 GeV (1999)
- **#** Set by mass of top quark, W boson
- Search...running out of space!

Higgs mass values

- associated production with $W/Z: q\bar{q} \longrightarrow V + H$
 - - gluon gluon fusion : $gg \longrightarrow H$
- associated production with heavy quarks : $gg, q\bar{q} \longrightarrow Q\bar{Q} + H$
- vector boson fusion : $qq \longrightarrow V^*V^* \longrightarrow qq + H$

<u>1 in a billion collisions</u>

- Most particles interact with Higgs
- Variety of decay channels
- Massive particles more likely
- Difficult to detect from background
- Needle in a haystack

Needle in haystack of needles

High luminosity required

Analysis: Grid

- Huge number of collisionsData analysis
- World Wide Web (1992)Platform for sharing data
- Grid (2012)Distributed computing
- World-wide network
- **#** Huge increase in computing power

Excess events at 125 GeV in ATLAS and CMS detectors Higher luminosity required (4.8 fb⁻¹ at that time)

April-July 2012: add 5.9 fb⁻¹ at 8 TeV

Measure energy of photons emitted

Measure decay products of <u>Z bosons</u>

Results (July, 2012)

 $H \rightarrow ZZ$ (8 TeV, 5.3 fb⁻¹)

Results summary

- New particle
- Mass 126 +/- 0.5 GeV
- Zero charge
- Integer (zero or two) spin (is it zero?)
- Scalar boson
- 6 sigma signal (August, 2012)

Higgs boson?!

IV Next at the LHC

Characterization of new boson

Branching ratios, spin Deviations from theory?

Supersymmetry

Numerous Higgs? Supersymmetric partner particles Implications for unification

Cosmology

Dark matter particles? Dark energy? Higher dimensions?

Cosmology at the LHC

- Snapshot of early universe Highest controlled energy density since BB
- Dark matter particles? Neutralinos (supersymmetry)
- Dark energy ? Scalar field
- Higher dimensions? Kaluza Klein particles
- String theory?

Summary (2019)

- New particle detected at LHC
- Mass 125.1 \pm 0.2 GeV
- Zero charge, zero spin
 - <u>Appears (so far, at the O(5% 10%) level...)</u> <u>consistent with Standard Model</u> <u>Higgs boson</u>

Appears (so far) to be confirmation of electroweak unification

Fundamental particle theory right so far

En route to a theory of everything ?

Space Expands

Edwin Hubble 1929

The Universe Is Radiant

Penzias & Wilson 1965

Temperature of the Universe is 3K (–270C)

BIG BANG

Complete History of the Universe (Abridged)

fraction of a second later Hot Primordial Soup

380,000 years later Radiation Last Scattered

> 13.78 thousand-million years later Today

Composition

Hubble Ultradeep Field

10,000 galaxies ----

50 thousand million visible to HST over entire sky

We live in a Universe of galaxies

Periodic Table - Chemist

Periodic Table - Cosmologist

Metals

H

Metals

Visible Matter

<u>Today:</u>

73% Hydrogen (10⁻⁵ deuterium) 26% Helium (10⁻⁵ ³He) 1% Metals

Three minutes AB:

The Visible Universe

Spitzer Space Telescope

The Invisible Universe

Abel 2218 HST

The Invisible Universe

Dark matter (50 times more than visible matter)

If We Could "See" Dark Matter

Dark Matter?

Newton's (or Einstein's) law of gravity is wrong

MACHOS (massive astronomical compact halo objects)

- planets

- dwarf stars (white, red, brown)

black holes

WIMPS (weakly interacting massive particles)

- a new type of particle relic from the big bang

Inner Space - The Quantum

CERN in Geneva

Particle Accelerator = Time Machine = Telescope

Large Hadron Collider (LHC)

KNOWN INGREDIENTS:

56% QUARKS 16% GLUONS **9% ELECTRON-LIKE PARTICLES** 9% W's AND Z's **5% NEUTRINOS 2% PHOTONS** 2% GRAVITONS 1% HIGGS BOSONS (to be discovered any day) SECRET INGREDIENT: DARK MATTER

19 4 1

Make WIMPS in the Laboratory

Yet More To The Dark Side

Dark Energy

<u>1917</u> Einstein proposed cosmological constant.

<u>1929</u> Hubble discovered expansion of the Universe.

<u>1934</u> Einstein called it "my biggest blunder."

<u>1998</u> Astronomers found evidence for it.

The Dark Side of the Universe

age of the universe

Unbearable Lightness of Nothing

10⁻³⁰ grams per cc

Supernovae are one of the powerful probes for understanding the eventual fate of the Universe *Distances to ~6% from brightness* Redshifts from features in spectra

600 million light-years away

(Hubble Space Telescope, NASA)

Cosmic Arithmetic

General Relativity, isotropy, and homogeneity require that (in the relevant units)

 $\Omega_{\text{geometry}} + \Omega_{\text{matter&radiation}} + \Omega_{\Lambda} = 1$

If the underlying geometry is flat ($\Omega_{geom} = 0$), & if $\Omega_{m&r} < 1$ then Ω_{Λ} ("cosmological constant term") *must* be non-zero.

Cosmic microwave background (CMB) measurements demonstrate the geometry is flat, $\Omega_{geometry} = 0$.

Mass inventories fall short of Ω_{matter} adiation =1 ($\Omega_{\text{matter}} \approx 0.3$, and the radiation contribution is tiny)

A Perplexing Result

- Expansion of Universe is accelerating!(?)
- Implies something new: "Dark Energy"
- Regions of empty space repel each other!
 - ? "Cosmological constant"...

Einstein's greatest blunder?

3

? What's going on in the vacuum?

Vacuum Energy and the Casimir Effect

So -- since vacuum fluctuations are real, why isn't dark energy <u>enormous</u> (10¹²⁰ times larger)???

Nothing is Something!

The Music of Quantum Fields

Limitations on our Knowledge of Dark Energy

- → Calibration of, and corrections to, brightness measurements are
 ✓ a significant source of uncertainty in measured cosmological parameters.
- Unless we improve calibration standards (for flux as a function of color) to
 < 1%, this will be a limiting systematic uncertainty for upcoming projects ...

7.7 billion light-years from Earth

Understanding the Acceleration of the Universe

Launch date ~2015

First data ~2013

... and others

JDEM Concept

	Aperture	1.8 meter
	Field of View	1.37 square deg
	Resolution	< 0.06 arcsec FWHM blur
	Bandpass	0.35-1.7 μm

JDEM Concept

All instruments/detectors on single focal plane.

- ✓ Passively cooled to 140K
- ↓ 0.7 square degrees instrumented FOV
- ↓ 9 fixed filters from 350nm to 1700nm
- ↓ 36 CCDs. 36 HgCdTe detectors

The Large Synoptic Survey Telescope (LSST)

- ↓ 8.4 m aperture
- ↓ Survey: 20,000 sq. degrees
- ↓ 9.6 sq. degree field-of-view
- ↓ 6 filters from 320nm to 1060nm
- ✓ Site: Cerro Pachon, Chile

The Large Synoptic Survey Telescope (LSST)

Complementarity of JDEM and LSST

The power spectrum of matter in the Universe (analogous, e.g., to the power spectrum of the CMB)

- Ground can survey whole sky, space can probe deeper in selected areas.
- Space data with lower systematics and higher redshift accuracy can calibrate ground surveys.

Improving Fundamental Calibration

+Roll

+Pitch

Not Easy

Need to get above the ATMOSPHERE

Another possibility: Balloons

But even after you very carefully calibrate them, stars are <u>VARIABLE</u> (majority on the > 1% scale).

<u>Wouldn't it be nice to just have a</u> (man-made) source up there ... ?

Using a Tunable Laser on the Ground

Use tunable laser to calibrate *telescope optical throughput* (Stubbs & Tonry): \mathbf{V}

Tunable laser (400 nm - 2 microns)

Back-illuminated flat field screen development

10% surface brightness uniformity is OK

Stubbs and Tonry (2006, submitted)

NIST photodiode QE

 λ . nm

A (Non-Tunable) Laser in Space...

The CALIPSO satellite (launched on Apr. 23, 2006) uses an Nd:YAG LIDAR laser at 1064 and 532 nm to measure the properties of clouds and the atmosphere. A tunable laser (and LIDAR receiver) could provide information in a *far* greater range of wavelengths.

A Tunable Laser in Space

- 1) Would allow atmospheric calibration for all major ground-based observatories (without any worries of stellar variability).
- 2) A monochromatic source that covers the entire wavelength range (250 to 2500 nm) -- avoids worries about differences between stars and galaxies.
- 3) Would provide an always-available fundamental spectrophotometric standard source for space-based observatories (e.g. SNAP).
- 4) Minimizes calibration transfers; precision is limited essentially only by radiometer uncertainty (only 0.01% !!)

Tunable laser

Opotek Vibrant LD 355 II

The VIBRANT is an integrated, turn-key tunable laser system. All of the system components, including the pump laser, the OPO, and the control electronics are mounted on a single optical frame. a a a la laffai a a a VIERANT а

Recently purchased \rightarrow

VIBRANT LD 355 II	Specifications	Comments
Pump Laser	Nd:YAG, Q-Switched	Brilliant, by Quantel
Pump Wavelength	355 nm	Nominal Energy 100 mJ
Pulse Repetition Rate (PRR)	Variable, Single pulse to 10 Hz	Computer Controlled
Pulse length	5 ns	Nominal
Beam Diameter	6 mm	Nominal
External Trigger	Lamp and Q-Switch	Lamp has to operate at designed PRR
OPO Parameters		
Wavelength Tuning Range	410 – 2400 nm	No gap
OPO Peak Energy	25 mJ	See tuning graph
Spectral Linewidth	4 – 7 cm ⁻¹	
Beam Divergence	< 2mRad	FWHM
Polarization	Linear	Signal: Horizontal
	All the large and QDQ (and large	Idler: Vertical
Computer Control	All the laser and OPO functions	ON, OFF, Power, Rep-Rate, Tuning

Options	Comments
UV Doubling Modules	Tuning range: 210 – 410 nm
Access to Laser Wavelengths	355, 532, and 1064 nm
Fiber Delivery	2 m fiber, mounted lenses, polishing kit
Comptroller for real time wavelength monitoring	OPO wavelength, auto calibration
Computer controlled Harmonics and polarizer	Automatic selection of tuning range
Variable Power Attenuator	Computer controlled 0 - 100% output power
266 nm output	Integrated Fourth Harmonic Generator

VIBRANT LD 355 II. Schematic Lavout 7

1	Pump Laser, Brilliant (B)
0	Olaasiaa Missas

- Steering Mirror Waveplate
- Steering Mirror
- Second Harmonic Generator (SHG)
- **Rejecting Mirror**
- Third Harmonic Generator (THG)
- Wavelength separation Mirrors 8
- 9 Steering Mirror 10
 - OPO model LD 355 II
- 11 Polarizer

Tunable Laser Setup

Safety barrier

Tunable Laser Setup

532 nm CALIPSO satellite laser spot in space, as observed from Earth during satellite overpass near Granby, Quebec, 07:08:30 Nov. 23, 2006 UTC

During

After

Before

Setup for Calibrated CALIPSO Observations

CALIPSO 2006/12/02 UTC CALIPSO ORBITAL PREDICT PLOT EPOCH DATE: 06/11/26 a lat: 43.702 lon: 287.712 res: 4 km

The Dark Side of the Universe

95% of the Universe Is Dark!

We shall not cease from exploration And the end of all our exploring Will be to arrive where we started And know the place for the first time.

- T. S. Eliot

How Understanding Fundamental Particle Interactions

Helps us Understand the Universe

Dr.Justin Albert

