
TRISEP - 2022

Reference notes for Statistics

D. Karlen / University of Victoria and TRIUMF

1



Table of contents
 3 Probability theory
 32 Describing data and distributions
 72 Special probability distributions
 109 Monte Carlo methods
 141 Testing hypotheses
 187 Estimating parameters and maximum likelihood
 230 Method of least squares
 250 Errors and confidence intervals

2



Probability Theory 

D. Karlen / University of Victoria and TRIUMF

3



Probability theory 
 The term “probability” arises in situations where we lack

complete certainty
 Mathematics – certainty (prove theorems are true or false)
 Experimental sciences – uncertainty

 the goal of experimental science is to improve our understanding of
things (the Universe, atoms, rabbits, …)

 progress is made by making observations that reduce our uncertainty
 a state of absolute certainty is seldom reached
 not generally realized by popular media and general public

 Statistics – the application of probability theory to
experimental science
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Meaning of probability 
 The word “probability” is common in everyday language

and, for many, it has an intuitive meaning that is not easily
expressed
 scientists need to be careful to use the term in a self-

consistent manner

 Question:  Does “probability” have the same meaning in
the two following sentences?
 The probability that a flipped coin shows heads is 50%.
 The probability that it will rain tomorrow is 50%.
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Meaning of probability 
 Question: Is “probability” a property of a object/system?

 Example: Suppose Jane says the following:
 “This open, black bottle contains 10 marbles: 2 are red and 8 are blue.

The mass, m, of the bottle is 1kg. If I shake the bottle and it is tipped
on its side, the probability, p , that a red marble is the first to come
out is 20%.”

 It seems clear that the mass, m, is a property of the bottle
 One could argue that the probability, p, is

 a property of the bottle (analogous to the mass); or
 a property of Jane, expressing her degree of certainty of a future

outcome of shaking and tipping the bottle
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Two approaches 
 Two approaches to probability theory have developed

using these two different interpretations of probability

 Original approach
 now known as “Bayesian” or “subjective”
 probability refers to the state of knowledge about a system – it is a

not a property of the system itself
 probability = degree of belief

 New (19th century) approach
 known as “frequentist”, “classical”, or “orthodox”!
 probability refers to a property of the system
 probability = relative frequency of occurrence
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Which approach to follow? 
 Most elementary data analysis textbooks for science

students follow the frequentist approach, and do not even
acknowledge that another approach exists
 ad hoc recipes and rules are given
 contradictions and paradoxes arise when other the other form

of probability is considered

 Practicing scientists usually follow the frequentist
approach in publishing results from experiments
 most feel that it is too subjective to consider probability as a

state of knowledge
 it requires one to assume a particular state of knowledge before the

experiment, in order to describe the state of knowledge after an
experiment
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Which approach to follow? 
 Frequentist approach cannot answer the important

questions, unlike the Bayesian approach
 eg. How certain are you that this is a new discovery?

 Because of current practice, I will focus on the frequentist
approach…
 it is important to be able to converse with the majority of

scientists

 I will point out the pitfalls along the way
 equally important to appreciate the limitations of frequentist

methods
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Frequentist probability: randomness 
 A system which behaves in a manner that cannot be

predicted with complete certainty is said to be random.
 Consider the two pushbutton boxes below. Which one might

be random?

1 1 1 1 1 1 1 1 1 1 

1 0 1 1 0 1 0 1 1 1 

• With the given information, we cannot be certain if either box
produces data with a predictable pattern.

• When we define a model to describe the boxes, we can choose
to characterize some aspects of it to be random.
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Random variables 
 Suppose we characterize the red box as random
 use the symbol “b” to represent an observed outcome of pushing

the button:
 b is either 0 or 1
 it has a known value – it should not be considered to be “random”

 use the symbol “B” to represent a possible (or future) outcome of
pushing the button
 B is an unknown value – it is called a “random variable”

 Random variables are used to represent data NOT YET OBSERVED
 although B is an unknown value, there is other information about B that

we may know
 Example:  the probability for an outcome of B to be 1 may be known.
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Frequentist probability 
 Frequentists generally consider probability to be a

property of the random system
 The probability P(B=1) is defined as:

 A circularity problem exists in this definition, if you try to put it
into practice:
 Repeated operations are needed to produce the trials
 what is required in these repeated operations – exactly the same

conditions? Similar conditions? How you decide what conditions?
 If the condition is that the probability is unchanged, then the definition is

circular.

number of occurrences of b=1 in n trials 
n n → ∞ 

P(B=1) = lim 
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A consistent framework for frequentists 
 A consistent frequentist should understand that:
 In all statistical analyses, a mathematical model of the

experiment is necessary to interpret the data.
 Randomness is a property of the model. One does not have to

assert that the physical system is random.
 Random variables are used only to refer to outcomes of the

model, not data from real experiments.
 The probability definition is therefore realizable, it can refer to model

trials repeated under exactly the same conditions.

 Any statements about probability may only refer to outcomes
of the model.

 Interpretations about the physical system following the
experiment assumes that the model is valid
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Probability axioms 

Probability Theory 

 Generally accepted rules for probability:
 0 ≤ 𝑃 𝐵 = 𝑖 ≤ 1

 where 𝑖 is an outcome (aka “event”)

 𝑃 𝐵 = 𝑖 or 𝐵 = 𝑗 = 𝑃 𝐵 = 𝑖 + 𝑃(𝐵 = 𝑗)
 provided that 𝑖 and 𝑗 are mutually exclusive

 𝑃 𝐵 in 𝑆 = 1
 where 𝑆 is the space of all possible outcomes

 Graphical example – probability for shapes & shades:

0.2 

0.1 

0.3 

0.2 

0.1 0.1 
• 𝑃 shaded oval = 0.2
• 𝑃 oval = 0.1 + 0.2 = 0.3
• 𝑃 shaded = 0.6
• 𝑃 oval or hexagon = 0.8
• 𝑃 oval or shaded ≠ 0.3 + 0.6

𝑃 oval or shaded = 𝑃 oval + 𝑃 shaded
−𝑃(shaded oval)
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Graphical example continued 

Probability Theory 

 The example is a space of “weighted events”:

 The equivalent example with “unweighted events” is:

0.2 

0.1 

0.3 

0.2 

0.1 0.1 

• In this case, each
event has the same
probability, 𝑃 = 1 𝑁⁄

• Often easier to use
to help your intuition
when manipulating
probabilities
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Combining probability: Joint probability 
 Consider the model with two pushbutton boxes, and a

set of trials where we push both buttons simultaneously
 Label the boxes, and describe their behaviour by the random

variables, A and B
 Let P(A) mean P(A=1), likewise for P(B), and P(AB) mean that

both P(A=1 and B=1)
 IF the boxes are independent of one another (nothing

connects them) then
P(AB) = P(A) P(B) 

 otherwise:
P(AB) = P(A) P(B=1 given A=1) = P(A) P(B|A) 

 the boxes are independent iff P(B) = P(B|A)
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Graphical example of joint probability 

Probability Theory 

 In this space: 𝑃 shaded = 0.6 and 𝑃 oval = 0.3

 In this space, shade and shape are independent:

𝑃 shaded oval = 𝑃 shaded 𝑃 oval shaded = 0.6 3⁄ = 0.2 

Of the shaded shapes, 2 of 6 are 
ovals, so 𝑃 oval shaded = 1/3 

𝑃 shaded oval = 𝑃 shaded 𝑃(oval) 
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Bayes rule 
 A simple formula, but very powerful

 Applies to both Bayesian and Frequentist probability

 Plays a crucial role in defining how to update Bayesian
probability after data is observed
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Graphical example of Bayes rule 

Probability Theory 

 Suppose an event from the space below is known to be
an oval. What is the probability that it is shaded?

 Check with Bayes rule:

 often the answer is not obvious and Bayes rule is needed

𝑃 =  2/3 obviously! 

𝑃 shaded oval =
𝑃 oval shaded 𝑃(shaded)

𝑃(oval) =
2 6⁄ ∙ 6 10⁄

3 10⁄ =
2
3 
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Subjective probability 
 The concept of randomness does not enter into the

definition of subjective probability
 The fact that a system behaves in an unpredictable way can be

considered to be due to our incomplete understanding of the
system

 It is not necessary to refer to repetitions

 Subjective probability is defined by the following:
 It is a representation of degree of belief by real numbers
 It has qualitative correspondence with common sense

 Example: symmetric outcomes have equal probability

 It takes into account all prior knowledge
 It is mathematically consistent
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Subjective probability example 
 Dr. Jane performs an ALS test on John
 let P(A) be the probability that John has ALS
 let P(B) be the probability for John to have a positive ALS test

result
 Dr. Jane’s state of knowledge is the following
 Prior to taking the test, she assigns the probability that John

has ALS to be that of the general population
P(A)=0.001 

 The test is not perfectly predictive. From previous studies, Dr.
Jane believes that

P(B|A) = 0.98  and P(B|A) = 0.03 
 The test comes back positive. Dr. Jane uses Bayes rule to

deduce P(A|B)
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Subjective probability example 

 Dr. Jane confidently tells John to not be concerned about
the test result

 John may have a different prior belief and may have reason
to be concerned…
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Subjective probability 

 P(A) is the prior belief
 must always have a prior belief – subjective

 P(B|A) is the likelihood
 probability of observing the data seen, given A

 P(B) is a normalizing factor
 P(A|B) is the posterior belief
 indicates how the state of knowledge is updated as a result of

observed data

)(
)()|()|(

BP
APABPBAP =

Probability Theory 23



Example shown graphically 

Probability Theory 

 Prior to the test, the space is:

 After the test, the space is:

 Given positive test: 𝑃 ALS = 0.00098 0.00098 + 0.02997 = 0.032⁄

non-ALS ALS 

𝑃 = 0.999 ∙ 0.97 
= 0.96903 

𝑃 = 0.001 

- test + test

𝑃 = 0.999 

𝑃 = 0.999 ∙ 0.03 
= 0.02997 

𝑃 = 0.001 ∙ 0.02 
= 0.00002 

𝑃 = 0.001 ∙ 0.98 
= 0.00098 
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Example from a frequentist viewpoint 
 Bayes theorem can be applied in frequentist methods,

provided all probabilities have a frequency interpretation
(as is the case in this example)
 P(A|B) is the probability that an individual drawn at random

from a model population that would have a positive test result,
actually has ALS

 In absence of prior knowledge P(A):
 Bayesian approach cannot be used
 Frequentist approach would result in the statement…

“We reject the hypothesis that John does not have ALS at 
the 97% confidence level” 

 It sounds like the opposite of the Bayesian result!
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Discussion 1: Lets Make a Deal! 
 In a game show in the 1970’s, a contestant is given the

opportunity to pick one of three doors, behind one of
which is the grand prize.
 After the contestant picks a door, one of the remaining doors

is opened (one without the prize). The contestant is then
offered the chance to switch to the other door.

 In order to maximize the chance of winning the grand prize, is
it best for the contestant to
 switch?
 stay with the original choice?
 it is the same either way?
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Discussion 2: Money in envelopes 
 Scenario 1:
 Suppose you are told you can have a $10, or choose one of two

envelopes (one has $5 and one has $20 inside).
 What is the best strategy?

 Scenario 2a:
 Suppose two envelopes are prepared by Jane who says that one has

twice as much money as the other. You select one envelope but
before opening it you are given the option to switch to the other
envelope.
 What is the best strategy?

 Scenario 2b:
 Suppose envelopes are prepared as in 2a, but you are allowed to

open the first envelope before deciding to switch, and find $10 in it.
 Compare this to scenarios 1 and 2. Is there an optimal strategy?
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Discussion 3: Survey 
 Suppose that 1% of Canadians have a degree in physics

and 80% of these physicists were men. A person is called
at random by a polling agency who wants to find out
about people’s University degrees.
 What is the probability that the person called has a physics

degree?
 If the person called is a man, what is the probability that he has

a physics degree?
 And if she is a woman?
 Are “male” and “physics degree” independent?
 Might they be independent in other populations?
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Discussion 4: Weather forecasting 
 Forecasts for the next day’s weather includes the

probability of precipitation (p.o.p.)
 If one meteorologist states that the p.o.p. is 70% and another

states that the p.o.p. is 40%, is at least one of the two
necessarily wrong?

 If you were asked to judge which of the two meteorologists
had the better understanding of weather patterns by only
looking at their past estimates of p.o.p. and the actual
observations of precipitation, how would you decide?
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Question: Two Dice 
 In a simple game with dice, your score is the sum of the

two dice points. If the two dice show the same number,
your score is doubled.
 Suppose after throwing the dice, you don’t see what happened,

but you are told that your score is 8.

 What is the probability that you rolled a “double”?
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Question: French language in US/Canada 

 In Canada there are about 31 million people, and
according to the 2011 census, 22% speak French at home.
In the US there are about 314 million people and 0.67%
of them speak French at home.

 A person is selected from US/Canada “at random” and is
found to speak French at home.
 What is the probability that the person is from Canada?
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Describing data
 In the physical sciences, we learn by performing

experiments
 To learn something new and significant we often need to work

at the limits of sensitivity → the outcomes of experiments are
affected by factors outside of our control
 our models include a random component to account for these factors
 we repeat measurements to better understand these factors and to

reduce their effect on our experimental outcomes

 Two approaches are used to give general impressions of
repeated outcomes of an experiment:
 Make a graphical representation of the data
 Calculate some “descriptive statistics”
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Histograms
 A graph that indicates the frequency of observing

different outcomes from your experiment
 it shows the “distribution” of the outcomes
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Alternatives to histograms
 Pie charts express the same information
 Warning – you may loose scientific credibility if you use these!

12.67%

21.33%
4.67%

10%

36%

15.33%

1
2
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Histograms
 If your data has a very large number of possible

outcomes, you may need to combine them into “bins”
 So that at least some bins have many entries
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Histograms
 If your data has a very large number of possible

outcomes, you may need to combine them into “bins”
 So that at least some bins have many entries
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Descriptive statistics
 Sample mean (aka average)
 Most meaningful single number to describe the outcomes of

your experiment

 Sample variance
 A number that indicates the spread of the outcomes

 The sample standard deviation is
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Relating data to models
 Due to uncontrollable factors repeated observations

yield a distribution of results
 To model this behaviour, you can include a random

component
 Any particular outcome has a certain probability of occurring

 Suppose our model has the following probabilities:
P(B=0) = 0.3 and P(B=1) = 0.7.
 A convenient way to express this is to say the B has the

following probability distribution:
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Probability distributions
 The distribution can be drawn as follows:

 or :
b

f(b)

0 1

0.3

0.7

b

f(b)

0 1

0.3

0.7
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Continuous random variables
 Most experiments record quantities that appear to be

continuous; for example, mass or temperature.
 In reality, systems cannot produce all possible values, the values

are quantized according to its precision.
 Even so, for convenience, such systems are usually modeled by

a continuous random variable; call it X.
 A probability density function f (x) is used express the

behaviour of such a model:
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Probability density function
 Example: Normal pdf and its cumulative

f(
x)

F(
x)
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Relation to histograms
 As more outcomes

are collected, and
the bin widths are
reduced, the
histogram takes the
shape of the pdf

 The red curve in
the final figure is
the pdf multiplied
by n∆x:
 n =10,000
 ∆x = 0.1
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Question: histograms and pdfs
 When overlaying a histogram with a pdf, you must

multiply the pdf by 𝑛𝑛∆𝑥𝑥, where 𝑛𝑛 is the number of entries
in the histogram and ∆𝑥𝑥 is the bin width.
 Explain why this is the correct “scaling factor”

 Explain what the procedure is to overlay data with a
cumulative distribution, for comparison
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Question: example pdf
 Suppose 𝑋𝑋 is a random variable whose probability density

is zero at 𝑥𝑥 ≤ 0 and rises linearly with 𝑥𝑥, except for 𝑥𝑥 >
10 where the density is zero again.
 What is the mathematical form for the pdf, 𝑓𝑓(𝑥𝑥) ?
 What is probability for 𝑋𝑋 to be in the range (4,6) ?
 What is the probability for 𝑋𝑋 = 5?
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Data with more than one observable
 Some experiments have more than one observable
 Outcomes of repeated

experiments can be shown
as a scatter plot:

 The average value of x or y,
or their sample variances are
useful descriptive statistics

 The sample covariance Vxy and correlation coefficient, ρ,
describe the “shared variation”:
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Presenting multivariate data in 2D bins

scatter plot 2D bins smoothing applied

n = 2000

n = 10000
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Modeling with multivariate pdfs
 With two observables, the experiment is modeled by

pairs of random variables X and Y

 probability density
shown by a colour scale
in this example
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Marginal pdfs

 Projections onto
x and y axes:

 Recall:
X and Y are
independent iff
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Marginal distributions

 Project data onto
x and y axes
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Conditional pdfs and distributions
 Conditional pdf: a normalized slice of the joint pdf:

 Conditional
distribution:
 distribution of

one variable for
data that satisfies
conditions on
other variable
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Question: Independence
 If 𝑋𝑋 and 𝑌𝑌 are independent, what can be said about the

conditional pdfs, ℎ(𝑥𝑥|𝑦𝑦) and ℎ(𝑦𝑦|𝑥𝑥) ?

 Use the “Plot2D” app and adjust the pdf parameters
 For each pdf type, what parameter values yield random

variables X and Y that are independent?
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Question: Units
 Suppose the random variables, M corresponds to mass in

kg, and T time in seconds. What are the units of the
following pdfs?
 f (m)
 g (m,t)
 h (m|t)
 F(m) (the cumulative distribution of f (m))
 gM (m) (the marginal pdf of g for m)

 What possible values can the following take?
 f (m)
 gM (m)
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pdf properties: Expectation value
 Given a continuous random variable X described by the

probability density, f(x):

the expectation value of X is defined as

 also known as the mean of X
 often denoted by µ

dxxfdxxXxP  )()( =+<<

[ ] XdxxfxXE µ== ∫
∞

∞−

 )( 

1 )( =∫
∞

∞−

dxxf

Describing data and distributions 54



pdf properties: Variance
 The variance of X is defined as:

 The “descriptive statistics” of observed data, introduced at the
beginning of this section, are estimates of properties of the pdf
that produced the data:
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pdf properties: Covariance
 The covariance of two random variables X and Y is

defined to be:

 The covariances are often collected into a covariance
matrix (aka the error matrix)
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pdf properties: Correlation coefficient
 The covariance is the variance that is linearly shared

between two random variables
 The correlation coefficient is defined by:

a dimensionless measure of correlation, and lies between 
-1 and 1.
 Examples:
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Correlation coefficient
 More examples:

ρ = 0.75 ρ = -0.75

ρ = 0.95 ρ = 0.25

Questions:
Which of the pdfs describe 
random variables that:

• are correlated?
• are positively correlated?
• which one has the
strongest correlation?

(a)

(c)

(b)

(d)
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Correlation coefficient

 Common misunderstanding:
 If X and Y are independent,

then ρXY = 0
 If ρXY = 0, then X and Y are

independent?
 not necessarily!

 do not confuse the two terms:
uncorrelated and independent have different meanings

Example:

E[XY] = E[X]E[Y]
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Question: example pdf
 Suppose 𝑋𝑋 is a random variable whose probability density

is zero at 𝑥𝑥 ≤ 0 and rises linearly with 𝑥𝑥, except for 𝑥𝑥 >
9 where the density is zero again.
 What is expectation value and variance of X ?
 What is the probability for X to exceed the expectation value?
 What is the probability for X to be within one standard

deviation of the expectation value?
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Question: correlation of mass and density

 Consider an experiment that measures the mass and
density of people, by weighing them and measuring the
displacement of water when they are submerged in a
pool. Would the correlation be positive or negative in the
models that describe this experiment for the following
two cases?
 A: repeated pairs of measurements of the same individual, done

over a short period of time (during which time the person
does not eat, etc.)

 B: single pairs of measurements for a group of individuals
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Question: covariance of measurements
 Consider measurements of the resistance of a resistor

undertaken by two people, one right after another.
 Suppose repeated measurements give different results because:

 variable quality of the contact between ohm-meter and resistor
 slow variations of the temperature of the ohm-meter

 To model this situation:, use two random variables to
represent future measurements by the two people. Assume
that the two measurements are done at the same temperature.

 What is the covariance, 𝑉𝑉𝑋𝑋𝑋𝑋 ?

𝑋𝑋 = 𝜇𝜇 + 𝐶𝐶𝑋𝑋 + 𝑇𝑇

𝑌𝑌 = 𝜇𝜇 + 𝐶𝐶𝑋𝑋 + 𝑇𝑇

𝐸𝐸 𝐶𝐶𝑋𝑋 = 0 𝐸𝐸 𝑇𝑇 = 𝜇𝜇𝑇𝑇
𝐸𝐸 𝐶𝐶𝑋𝑋 = 0
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Question: covariance for different sensitivity

 Suppose two ohm-meters meters have different linear
temperature dependencies. If the random variables, 𝑋𝑋 and
𝑌𝑌, represent hypothetical measurements from the two
meters, their expectations at temperature 𝑡𝑡 are:
 𝐸𝐸 𝑋𝑋 = 𝜇𝜇 + 𝑎𝑎 𝑡𝑡 − 𝑡𝑡0
 𝐸𝐸 𝑌𝑌 = 𝜇𝜇 + 𝑏𝑏 𝑡𝑡 − 𝑡𝑡0

 In absence of temperature variations, the ohm-meters
have independent variation due to unknown factors:
 𝑉𝑉𝑋𝑋 = 𝑉𝑉𝑋𝑋 = 𝜎𝜎2

 In a situation where the temperature variation is:
 E 𝑇𝑇 = 𝑡𝑡0 + 1 and 𝑉𝑉𝑇𝑇 = 𝜎𝜎𝑇𝑇2

 Calculate: 𝐸𝐸 𝑋𝑋 , 𝑉𝑉𝑋𝑋, and 𝑉𝑉𝑋𝑋𝑋𝑋
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Functions of random variables
 Some systems can be described by outcomes of a

function of a simple random variable
 A function of a random variable is also a random variable
 Consider a continuous random variable 𝑋𝑋 with pdf 𝑓𝑓(𝑥𝑥) and a

random variable,  𝑌𝑌, that is formed by some mathematical
operation on 𝑋𝑋, ie. 𝑌𝑌 = 𝑌𝑌(𝑋𝑋).
 A simple example:  𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋

 What is the pdf of 𝑌𝑌, 𝑔𝑔(𝑦𝑦) ?

 Answer: Use the fact that the probability content of a range of
outcomes are related:

𝑃𝑃 𝑥𝑥 < 𝑋𝑋 < 𝑥𝑥 + 𝑑𝑑𝑥𝑥 = 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥
𝑃𝑃 𝑦𝑦 < 𝑌𝑌 < 𝑦𝑦 + 𝑑𝑑𝑦𝑦 = 𝑔𝑔 𝑦𝑦 𝑑𝑑𝑦𝑦

Describing data and distributions 64



Functions of random variables
 If the function is monotonic (single valued inverse):
 The probability for
𝑋𝑋 to be within
[𝑥𝑥, 𝑥𝑥 + 𝑑𝑑𝑥𝑥] is the
same as the
probability for 𝑌𝑌
to be within
𝑦𝑦,𝑦𝑦 + 𝑑𝑑𝑦𝑦

𝑔𝑔 𝑦𝑦 𝑑𝑑𝑦𝑦 = 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑔𝑔 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

−1

𝑑𝑑𝑥𝑥

𝑑𝑑𝑦𝑦

𝑦𝑦 = 𝑦𝑦(𝑥𝑥)
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Functions of random variables
 If the function inverse is multivalued:
 Include all solutions

𝑑𝑑𝑥𝑥1

𝑑𝑑𝑦𝑦

𝑦𝑦 = 𝑦𝑦(𝑥𝑥)

𝑑𝑑𝑥𝑥2

𝑔𝑔 𝑦𝑦 = 𝑓𝑓 𝑥𝑥1 �
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 𝑑𝑑=𝑑𝑑1

−1

+ 𝑓𝑓 𝑥𝑥2 �
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥 𝑑𝑑=𝑑𝑑2

−1
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Convolution of random variables
 Convolution is the combination of more than one

random variable to form a new random variable
 The most common convolution is adding two random variables

𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌
 Consider the outcomes of
𝑋𝑋 and 𝑌𝑌 that produce an
outcome of 𝑍𝑍 in the range
𝑧𝑧, 𝑧𝑧 + 𝑑𝑑𝑧𝑧 : 

 If 𝑋𝑋 and 𝑌𝑌 are independent:

lines of constant z

𝑃𝑃 𝑧𝑧 < 𝑍𝑍 < 𝑧𝑧 + 𝑑𝑑𝑧𝑧 = ℎ 𝑧𝑧 𝑑𝑑𝑧𝑧

= �
−∞

∞
𝑓𝑓(𝑥𝑥, 𝑧𝑧 − 𝑥𝑥)𝑑𝑑𝑥𝑥 𝑑𝑑𝑧𝑧

𝑦𝑦 = 𝑧𝑧 − 𝑥𝑥

ℎ 𝑧𝑧 = �
−∞

∞
𝑓𝑓 𝑥𝑥 𝑔𝑔(𝑧𝑧 − 𝑥𝑥)𝑑𝑑𝑥𝑥
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Question: function of a random variable
 If 𝑋𝑋 has uniform probability density in the range 2,8

and zero density
elsewhere, and 𝑌𝑌
is a function of 𝑋𝑋
as illustrated here,
describe the general
features of the
probability density,
𝑔𝑔(𝑦𝑦)

𝑦𝑦 = 𝑦𝑦(𝑥𝑥)
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Question: linear function of a RV
 Consider the simple function of a random variable 𝑋𝑋
𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋 , where 𝑎𝑎 and 𝑏𝑏 are constants.
 What is the expectation values and variance of 𝑌𝑌 in terms of

the corresponding properties of 𝑋𝑋?
 Compare with a derivation directly from the definitions of

expectation value and variance.
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Question: quadratic function of a RV
 Consider the quadratic function of a random variable 𝑋𝑋
𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋2 , where 𝑎𝑎 and 𝑏𝑏 are constants.
 Suppose 𝑋𝑋 has uniform density between (0,10) and zero

density elsewhere, what is the probability density for 𝑌𝑌?
 What is the expectation values and variance of 𝑌𝑌?
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Question: Convolution
 Suppose 𝑋𝑋 and 𝑌𝑌 are independent random variables

whose probability density are both constant in the range
(0,10) and zero elsewhere

 What is the probability density for 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌?

 Suppose the random variables are not at all independent,
but instead, 𝑋𝑋 = 𝑌𝑌.  What is the probability density for
𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌 now?
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Special probability distributions
 There are several probability distributions that are

particularly useful when developing models of physical
systems with random variables:
 Binomial distribution
 Multinomial distribution
 Poisson distribution
 Uniform distribution
 Exponential distribution
 Gaussian (normal) distribution
 Chi-square distribution
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Binomial distribution
 Used for modeling repeated independent observations

(under identical conditions) of an non-predictive system
that has two possible outcomes:
 success or failure
 life or death
 heads or tails

 The model is defined by p (probability of success) and N
(number of trials)

 Since each trial is independent, the result is given by the
random variable n (number of “successes”)
 the order of successes is not relevant
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Example:
 A simple model for 3 free throw attempts, each with

probability 0.8 of success:

Results Probability
0 0 0 0.2*0.2*0.2 = 0.008
0 0 1 0.2*0.2*0.8 = 0.032
0 1 0 0.2*0.8*0.2 = 0.032
0 1 1 0.2*0.8*0.8 = 0.128
1 0 0 0.8*0.2*0.2 = 0.032
1 0 1 0.8*0.2*0.8 = 0.128
1 1 0 0.8*0.8*0.2 = 0.128
1 1 1 0.8*0.8*0.8 = 0.512

n Probability
0 1 * 0.008 = 0.008
1 3 * 0.032 = 0.096
2 3 * 0.128 = 0.384
3 1 * 0.512 = 0.512
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Binomial distribution
 The binomial distribution is defined to be the probability

of observing n successes in this model:

 since n is a discrete variable (integer), this is known as a
probability mass function (instead of probability density
function):
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Properties of the binomial distribution
 Expectation value and variance:
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Examples of binomial distributions

𝑁𝑁 = 5
𝑝𝑝 = 0.5

𝑁𝑁 = 20
𝑝𝑝 = 0.1

𝑁𝑁 = 20
𝑝𝑝 = 0.25

𝑁𝑁 = 20
𝑝𝑝 = 0.5

𝑁𝑁 = 10
𝑝𝑝 = 0.5

𝑁𝑁 = 20
𝑝𝑝 = 0.75
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Multinomial distribution
 This is a generalization of the binomial distribution for

systems with more than two possible outcomes.
 If there are m possible outcomes,

𝑓𝑓 𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑚𝑚 𝑁𝑁,𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑚𝑚 = 𝑁𝑁!
𝑛𝑛1! 𝑛𝑛2! … 𝑛𝑛𝑚𝑚!

𝑝𝑝1
𝑛𝑛1𝑝𝑝2

𝑛𝑛2 …𝑝𝑝𝑚𝑚
𝑛𝑛𝑚𝑚

 Properties:

𝐸𝐸 𝑛𝑛𝑖𝑖 = 𝑁𝑁𝑝𝑝𝑖𝑖 𝑉𝑉𝑖𝑖𝑖𝑖 = �
𝑁𝑁𝑝𝑝𝑖𝑖 1 − 𝑝𝑝𝑖𝑖 𝑖𝑖 = 𝑗𝑗
−𝑁𝑁𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗
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Poisson distribution
 A limiting case of the binomial distribution
 N → ∞, p → 0, Np = ν

 in limit of N → ∞:

 Giving:
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Properties of the Poisson distribution
 Expectation value and variance:
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Poisson examples:

𝑁𝑁 = 10
𝑝𝑝 = 0.5

𝑁𝑁 = 20
𝑝𝑝 = 0.25

𝑁𝑁 = 50
𝑝𝑝 = 0.1

𝜈𝜈 = 2

𝜈𝜈 = 5

𝜈𝜈 = 10
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Poisson example: Radioactive decay
 Construct a model of an experiment that counts the

number of decays from a radioactive source in a time
interval, T, as follows:

 in a short time interval, ∆t, assume that the probability for a
decay to occur is given by p = α ∆t
 this assumes that the total number of decays is much less than the

total number of radioactive nuclei in the source

 this can be considered to be N observations, T = N ∆t
 Let the number of time intervals containing a decay be n
 n is a binomial random variable, with pmf:

 In the limit N → ∞, n will be the number of decays, and is a
Poisson random variable with pmf:

),|( pNnf

)|(  Tnf α

Δ𝑡𝑡
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Uses of Poisson distribution
 For any system, where the probability for an occurrence

can be assumed to be independent of time, the number of
such occurrences observed in a time interval can be
modeled by a Poisson random variable

 Possible examples (using simplified models):
 number of email messages received in a day
 number of car batteries sold per week in Victoria
 number of jackpot winners in a casino per week
 number of homicides in Canada each year
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Question: radiobiology
 In a radiobiology research project, a large number of cells

are irradiated in vitro and the number of surviving cells are
counted
 Suppose the goal of the project is to ascertain whether cell

survival depends on the temperature. Measurements would be
repeated at different temperatures.

 The experiment needs to be setup so that under identical
conditions, the standard deviations in the surviving cell
fractions is about 2%

 If typically about 40% of cells survive, how many cells need to
be irradiated in each experiment?

 Hint: use a model to answer this question!
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Question: airport security
 A terrorist tries to bring through airport security a well

shielded radioactive source that emits neutrons. The
shielding is such that, on average, only 2 neutrons escape
per second. The airport security has a neutron detector
which detects neutrons, but with an efficiency of only 10%
and packages pass through the detector for only 3
seconds.

 Develop a model for this situation. In this model, what is the
probability that the terrorist will be caught?
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Question: particle detector
 Consider an experiment that counts radioactive decays

from a source, using a new kind of detector
 Suppose you want to understand the behaviour of the

detector under different operating voltages. You would
like your tests to be sensitive to changes of about 5% in
the observed count rate.

 Develop a model for this experiment. Assume the count rate is
about 10 per second. If the standard deviation for the number
of counts in the model is to be about 2%, how much time is
needed for each voltage setting?
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Question: one dice
 Consider a model of an experiment that roles a single

dice (a die) 100 times.
 The die has 6 sides, with numbers from 1-6.

 What is the expectation value?
 What is the variance and correlation between the number of

3s and the number of 4s to be observed?
 Why is this not zero? Why is it negative?

 Can you change the setup so that the number of 3s and the
number of 4s would not be correlated?
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Question: three coins
 Suppose you have three coins.  They are identical: one

side is labelled 0 and the other side is labelled 1. The
probability for a coin to show either side after being
flipped is equal.

 What is the probability distribution for the sum of three coins
being flipped?

 Do you use the binomial or multinomial distribution?
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Question: two dice
 What is the probability distribution for the sum of two

dice being thrown?
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Question: Automobile traffic
 The number of cars that cross the Golden Gate Bridge

each year is shown here:

 Is the variation from one year to the next similar to what
would be expected if the crossing probability was constant?

Fiscal Year
Avg. Vehicles

per day Total Vehicles Toll Revenue

2002-2003 106,456 38,856,556 $ 79,427,334

2003-2004 106,234 38,881,684 $ 84,419,500

2004-2005 106,292 38,796,706 $ 84,213,058

2005-2006 106,719 38,952,378 $ 84,746,887

2006-2007 108,263 39,516,006 $ 84,970,839

2007-2008 107,541 39,359,932 $ 85,416,488

2008-2009 104,474 38,132,812 $ 97,121,446

2009-2010 106,784 38,976,078 $100,568,913

2010-2011 110,113 40,191,124 $100,779,715
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Question: Free throw record
 Ted St. Martin holds the world record for consecutive

free throws:  an incredible 5,221
(in 7 hours and 20 minutes)

 Model each throw as being independent with the
probability p of making the shot.

 If the success rate is 99.9% what is the probability to make
5,221 successful free throws in 5,221 attempts?
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Question: Baseball
 In 1961 the Philadelphia Phillies lost won only 47 games

out of 154. (There are no ties in MLB).
 Furthermore they lost 23 games in a row, a modern day

record.

 How unlikely is it that such a poor team would have such a
long losing streak?
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Question: Radioactive sources
 Suppose your lab has purchased two types of radioactive

sources. Type A has an activity of 5 counts per minute and
Type B has an activity of 10 counts per minute. You have
18 of type A and 2 of Type B, but there are no markings
to distinguish them and they were put into the same box.

 You select one of the sources and put it inside a perfectly
efficient radiation counter for 1 minute. It records 10
decays.

 What is the probability that the source you selected is Type B?
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Question: Bag of coins
 You are given a bag with an unknown number of coins –

you only know that there is an odd number of them.
 All the coins in the bag are thrown in the air, and you are

told that exactly 3 landed showing heads.

 What is the most probable number of coins that were in the
bag?

 Repeat the problem, assuming that the prior probability for the
number of coins, 𝑁𝑁, is proportional to 1/𝑁𝑁
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Uniform distribution
 The uniform probability density function is constant

between two endpoints, and zero elsewhere.
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Exponential distribution
 Used for modelling a system in which the probability for

an occurrence is independent of time
 The length of time that passes while waiting for the

occurrence, is a random variable described by the exponential
distribution.

 Example: Lifetime of a particle. Divide the time interval t
into n equal subintervals. The probability of a decay to
occur in any subinterval is α t/n. The probability for the
particle to remain after time t is
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Exponential distribution
 The p.d.f. for the decay time random variable T is derived

as follows:

 Usually the pdf is expressed as follows:

 Properties:
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Gaussian (normal) distribution
 This distribution has many applications.
 Central limit theorem: The sum of n independent random

variables Xi with means µi and variances σi
2 becomes a

Gaussian random variable with mean µ and variance σ2 in the
limit that n approaches infinity, where

 regardless of the forms of the individual p.d.f.s for Xi (under fairly
general conditions)
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Gaussian distribution
 The pdf is given by

 standard Gaussian:

 cumulative:
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multi-dimensional Gaussian
 The joint probability density of N random variables, each

distributed according to the Gaussian distribution is given
by:

𝑓𝑓 �⃗�𝑥 �⃗�𝜇, V = 2𝜋𝜋 −𝑁𝑁/2 V −1/2 exp −1
2
�⃗�𝑥 − �⃗�𝜇 𝑇𝑇𝐕𝐕−1 �⃗�𝑥 − �⃗�𝜇

means covariance determinant inverse

𝐕𝐕 = 1 0.8
0.8 1 𝐕𝐕 = 1 0.4

0.4 1 𝐕𝐕 = 1 0.8
0.8 4

�⃗�𝜇 = 5,5 �⃗�𝜇 = 5,5 �⃗�𝜇 = 5,5
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Chi-square distribution (χ2)
 This distribution describes the pdf of the random variable

formed by adding squares of n standard Gaussian random
variables:

 n is called the “number
of degrees of freedom”
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Question: uniform distribution
 Suppose the random variable, X, is distributed according

to the uniform distribution, f(x|1,2)
 What is E[X] ?
 What is E[1/X] ?
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Question: lifetime
 At rest, muons have a lifetime of 2.2 µs
 What is the meaning of this statement?
 Is this related to the half-life?

 Suppose we capture a muon in a special trap.
 According to our model, what is the probability that the muon

survives in the trap for 10 µs?
 Does it matter how much time the muon spent before

entering the trap?
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Question: weigh scales
 Suppose readings of a scale are well modelled by a

random variable distributed according to a Gaussian
distribution about the true mass with a standard
deviation of 0.02 kg.

 Three calibration masses are put on the scale, with the
following results:

 What is the probability that the sum of the squares of the
differences would be as far away from the true values (or
further), according to this model.

Calibrated mass Measured mass

1 kg 1.02 kg

2 kg 1.94 kg

3 kg 2.96 kg
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Question: 2 lifetimes
 Suppose the unstable particle A is produced in an

accelerator experiment.  A has a mean lifetime of 𝜏𝜏𝐴𝐴 and
decays into the unstable particle B. B has a mean lifetime
of 𝜏𝜏𝐵𝐵 and decays into the stable particle C.
 What is the probability density for the elapsed time between

the creation of particle A and the creation of particle C?
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Questions: 𝜒𝜒2 distribution
 Derive the form of the 𝜒𝜒2 distribution for 𝑛𝑛 = 1

 What is the probability that the sum of the squares of
two random variables, each described by the standard
Gaussian, will be less than 2?

 What is the probability distribution for the sum of two
random variables that each follow a 𝜒𝜒2 distribution for
𝑛𝑛 = 2?
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Question: multi-dimensional Gaussian
 Consider the form of the multi-dimensional Gaussian

when the covariance is

𝑉𝑉 = 1 0
0 4

 Show that this form can be rewritten as
𝑓𝑓 𝑥𝑥, 𝑦𝑦 = 𝑓𝑓 𝑥𝑥|𝜇𝜇,𝜎𝜎 = 1 𝑓𝑓(𝑦𝑦|𝜇𝜇,𝜎𝜎 = 2)
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Monte Carlo methods

D. Karlen / University of Victoria and TRIUMF
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Monte Carlo Methods
 To describe unpredictable behaviour, we develop

mathematical models that use the concept of probability
and random variables.

 Monte Carlo methods are computer implementations of
these models, in which the outcomes of random variables
are assigned by numerically generated sequences
 these sequences are generally called “random numbers”
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Random numbers
 What are random numbers?
 suppose R is a random variable described by the probability

density function, f(r)
 a single (unpredictable) outcome of R is a random number
 a sequence of numbers, r1, r2, r3, …, rn are said to be random numbers

that are generated according to f(r), iff each number is an independent
outcome of R

 properties of a sequence of random numbers
 in the limit as n goes to infinity, the fraction of numbers in the

sequence that are in the range (a,b) equals the integral of f(r) over
that range, for all a and b

 you will not see a “pattern”, since each outcome of R is unpredictable
– and independent of one another

 they are NOT random variables (since the values are known)
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Pseudo-random numbers
 Monte Carlo methods use numerically generated values

to simulate the outcome of a random variable
 since a numerical algorithm is used to generate the sequence,

the numbers are completely predictable – some people call
them “pseudo-random”

 for good pseudo-random number generators, the pattern is
not apparent and it turns out that they behave like truly
random numbers for many applications
 likewise, the system that we are modelling with random variables may

actually follow a predictable pattern that we are not aware of!

 in the following “random number” will generally mean a
“pseudo-random number”…
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Generating uniform random numbers
 Most algorithms that generate random numbers do so

according to the uniform distribution fu (r |0,1).
 Such a sequence can be used in turn to generate random

numbers according to an arbitrary pdf, f(x).

 Simple algorithm: Multiplicative Linear Congruential
 pick a multiplier a, modulus m, and starting value n0 , generate

the integer sequence according to the rule:

random numbers generated according to fu (r |0,1) are given by:

( ) mann ii mod1 =+

mnr ii /=
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Multiplicative Linear Congruential method

 The choice of multiplier, modulus, and seed are made so
that the period is as long as possible
 once a sequence starts repeating, this cannot be considered a

good approximation of a random sequence
 for 32 bit integers, the maximum period is the number of all

integers that can be represented, about 2 x 109

 this length can be realized, for example
 a = 40692
 m = 2147483399

 other choices can lead to short periods or other behaviours…
 try a = 65539 and m = 231 with applet…
 change a by +/- 3

Monte Carlo methods 114



Transformation method
 In this method, a function is found, 𝑥𝑥 = 𝑥𝑥(𝑟𝑟), that

transforms uniformly distributed random numbers into
random numbers that are distributed according to some
other pdf, 𝑓𝑓(𝑥𝑥).

 To find the function, set the cumulative distributions to be
equal:

 this equation cannot always be solved… the cumulative of the
pdf must be invertible

)(      for  solve

)()(

)()(

1
0

rFxx

xFdxxfrdr

xXPrRP

X

X

xr

−

∞−

=→

===

<=<

∫∫

Monte Carlo methods 115



Example: Transformation method
 Generate a random number according to the exponential

pdf

 since r is a uniform random number (0,1),
will also work
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Question: transformation method
 Describe a method that will generate random numbers

according to the pdf,

where α is a constant. What is α?



 <<

=
otherwise     0

10    /)( xxxf α
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Question: transformation method
 Describe a method to generate a sequence of random

numbers that follow the pdf:

 The constants, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are all positive numbers.

𝑓𝑓 𝑥𝑥 = � 𝑎𝑎 + 𝑏𝑏𝑥𝑥 0 < 𝑥𝑥 < 𝑐𝑐
0 otherwise
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Question: two lifetimes
 Suppose the unstable particle A is produced in an

accelerator experiment.  A has a mean lifetime of 𝜏𝜏𝐴𝐴 and
decays into the unstable particle B. B has a mean lifetime
of 𝜏𝜏𝐵𝐵 and decays into the stable particle C.
 Explain how to generate a sequence of random numbers that

would follow the probability density for the elapsed time
between the creation of particle A and the creation of
particle C?
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Acceptance-rejection method
 The inversion technique for generating random numbers

according to a pdf, works best for relatively simple pdfs,
where the cumulative can be inverted analytically
 In other cases, one could invert the cumulative numerically

(root finding) but this is usually inefficient

 A very different approach is to use uniform random
numbers to examine the pdf at random locations…
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Acceptance-rejection method
 Example pdf:

 to span the range of the pdf, spread uniform numbers evenly
between xmin and xmax

xmin xmax

1minmaxmintrial )( rxxxx −+=
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Acceptance-rejection method

 select a subset of the trial random numbers with a probability
proportional to f(x):
 Accept the trial only if:

and 𝑟𝑟2 is an independent random number

xmin xmax

1minmaxmintrial )( rxxxx −+=

fbig

xxffrfxf ∀>>    )( re       whe)( big2bigtrial
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Acceptance-rejection method

 This can be visualized as throwing darts uniformly in the
rectangular box above
 the dots below the curve are accepted

xmin xmax

1minmaxmintrial )( rxxxx −+=

fbig

2bigtrial )( rfxf >
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Estimating the integral

 The same procedure can be used to estimate the integral of
any bounded function
 the fraction of dots accepted is the fraction of the total area
 the estimate is an outcome of a random variable K:

xmin xmax

1minmaxmintrial )( rxxxx −+=

fbig

2bigtrial )( rfxf >
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Estimating the integral

 K follows the binomial distribution, where

 so, the variance in the estimate for the integral is

 the relative uncertainty is
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Acceptance-rejection method
 The acceptance-rejection method is easily generalized for

multidimensional pdfs
 throw darts into a n-volume

 The method is inefficient if pdf has sharp peaks
 very few trials are accepted

 The method cannot be used if pdf has a pole or defined
over an infinite range
 for example,

0   )(
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Question: Quarter-circle
 Use the general approach of acceptance-rejection to

estimate the area of a quarter-circle of radius 1.

 Plot the estimated area as a function of number of trials
 Plot the difference between the estimated area and the

true area as a function of the number of trials
 overlay the expected functional dependence of the standard

deviation (see equation for 𝜎𝜎𝐼𝐼), earlier.

Monte Carlo methods 127



Importance sampling
 Importance sampling is a hybrid of the two methods

(inversion and acceptance-rejection)
 consider 𝑓𝑓(𝑥𝑥), a complicated pdf for which the acceptance-

rejection technique is inefficient or cannot work
 generate trial random numbers, 𝑥𝑥trial, but not uniformly over

the range. Preferentially sample regions where 𝑓𝑓(𝑥𝑥) is larger
 To do this, use a simplified approximation of the pdf, 𝑔𝑔(𝑥𝑥) in which

the inversion technique applies – the trials are random numbers
generated according to 𝑔𝑔(𝑥𝑥)

 select a subset of the trials with probability proportional to the
“weight”:   𝑤𝑤 = 𝑓𝑓(𝑥𝑥)/𝑔𝑔(𝑥𝑥)
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Importance sampling
 Example

 functions are not normalized!
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Importance sampling
 Notes:
 in a more complicated example, 𝑓𝑓(𝑥𝑥) might not be analytic –

and therefore 𝑤𝑤big may be unknown
 choose a value by guessing : if a trial happens to produce a weight

larger than this value, then increase wbig and start over

 only the shape of the pdf 𝑓𝑓(𝑥𝑥) is required, not its
normalization. The integral can be estimated:
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Importance sampling
 A more efficient estimate of the integral is found by using

all trial events (not just those that are accepted):

 Estimate the expectation value E[W]

 the variance using this approach is always less than the variance
from the approach that uses only accepted trials (on the
previous page)
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Questions: Importance sampling
 Describe methods to generate random numbers that

follow the following pdfs:
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Multidimensional pdfs
 Simple extension for acceptance-rejection method

 For the other methods, use:

 generate y according to f(y)
 use that value of y, and generate x according to f(x|y)
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Markov chain Monte Carlo

Monte Carlo methods

 The methods described earlier in this section are
designed to produce sequences of random numbers, �⃗�𝑥𝑏𝑏
which represent independent outcomes of the random
variables �⃗�𝑋, described by the joint pdf 𝑓𝑓(�⃗�𝑥)
 this is a good model for repeated experimental measurements

when the outcome from one trial is independent from other
trials

 Markov chain Monte Carlo (MCMC) methods are
efficient for producing sequences in large-dimensions,
when there is no requirement for them to represent
independent outcomes
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Markov chain Monte Carlo

Monte Carlo methods

 The most common MCMC algorithm is the Metropolis-
Hastings method:
 𝑖𝑖 is the serial number of the random sequence of points
 start the sequence (𝑖𝑖 = 0) with an arbitrary point �⃗�𝑥0, such that
𝑓𝑓 �⃗�𝑥0 > 0

 consider a proposed next point in the sequence: an outcome
of the random variable 𝑌𝑌𝑏𝑏 defined by the pdf 𝑞𝑞(�⃗�𝑦|�⃗�𝑥𝑏𝑏)
 note that the next point depends on its preceding point

 accept the proposed next point with probability 𝜌𝜌(�⃗�𝑥𝑏𝑏 , �⃗�𝑦𝑏𝑏) and
otherwise repeat the current point
 that is, if accepted: �⃗�𝑥𝑏𝑏+1 = �⃗�𝑦𝑏𝑏 and otherwise �⃗�𝑥𝑏𝑏+1 = �⃗�𝑥𝑏𝑏
 𝜌𝜌 �⃗�𝑥, �⃗�𝑦 = min 𝑓𝑓(𝑦𝑦)

𝑓𝑓(�⃗�𝑥)
𝑞𝑞(�⃗�𝑥|𝑦𝑦)
𝑞𝑞(𝑦𝑦|�⃗�𝑥)

, 1

 repeat the previous two steps, to produce a long sequence of
points distributed according to 𝑓𝑓(�⃗�𝑥)
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Markov chain Monte Carlo

Monte Carlo methods

 The initial points in the chain may not be representative
of the pdf, and therefore it is common to discard them
 To decide if you have discarded enough,  check if your result

changes significantly when you discard fewer or more
 For high dimension studies, 1000s of points may need to be

discarded

 Further simplification: choose a “symmetric” pdf:
𝑞𝑞 �⃗�𝑦 �⃗�𝑥 = 𝑞𝑞(�⃗�𝑥|�⃗�𝑦)

 then:  𝜌𝜌 �⃗�𝑥, �⃗�𝑦 = min 𝑓𝑓(𝑦𝑦)
𝑓𝑓(�⃗�𝑥)

, 1
 always jumps to the proposed point if it has higher density

 Examples: uniform or Gaussian distribution centered on �⃗�𝑥
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Generating Gaussian random numbers
 Method #1: Use central limit theorem, and add 12

uniform random numbers (0,1) and subtract 6.

 Method #2: Use a variable transformation for the 2
dimensional Gaussian:

( )dxdyyxdxdyyxf )(exp
2
1),( 22

2
1 +−=

π
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Generating Gaussian random numbers
 in polar coordinates:

 Use the inversion technique to generate u, θ:
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A similar method is implemented in
java.util.Random:

random.nextGaussian()
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Question: 𝜒𝜒2distribution
 Explain methods to generate random numbers that follow

the 𝜒𝜒2distribution
 Is your method efficient for any number of degrees of

freedom?
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Question: multi-dimension Gaussian
 Develop a simple method to generate random variables

according to a 2-dimensional Gaussian distribution, with
standard deviations 𝜎𝜎1, 𝜎𝜎2 and correlation coefficient 𝜌𝜌.
 Hint: include covariance as a shared variation by combining

one-dimensional Gaussian random variables
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Testing Hypotheses 

D. Karlen / University of Victoria and TRIUMF
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Testing Hypotheses 
 Measurements can be used to test hypotheses.
 examples:

 Hypothesis under test:
 sometimes called the “null hypothesis” and labelled H0

 simple hypothesis: specific enough to define the probability
distribution of the observables (if the hypothesis is true)

Measurement Hypothesis under test 

body weight diet modification is ineffective 

particle ionization rate particle is a proton 

ocean temperatures climate is unchanging 

supernova absorption lines supernova is type Ia 
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Testing Hypotheses 
 To test the null hypothesis, properties of alternative

hypotheses must also be known:
 If the probability (density) for the observed value is zero for

all alternative hypotheses (while it is non-zero for the null
hypothesis) → a definitive statement can be made:

“The null hypothesis is true.” 

 Typically the observed value is possible under null and
alternative hypotheses → no definitive statement can be made
 Instead, a probability statement is made about the null hypothesis
 The probabilities calculated by Bayesians and Frequentists are very

different
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Testing Hypotheses: Bayesian 
 Calculate the posterior probability that the hypothesis

(H0) is true, given the observed data (x):

 requires a prior probability for the null hypothesis
 requires all alternative hypotheses and their prior beliefs

to be specified:

 

 can be difficult to compute!
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Testing Hypotheses: Bayesian 
 If just one alternative hypotheses, consider the “posterior

odds”:

 posterior probability:
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Testing Hypotheses: Frequentist 
 Assuming the null hypothesis to be true, calculate the

probability of measuring data as “anomalous” (or more
anomalous) than observed
 this quantity is called a “P-value”

 small values do not lend support to the hypothesis

 Problems with this approach:
 often misinterpreted as the probability that H0 is true
 ad-hoc definition of “more anomalous”

 normally that which is further from expectation if H0 was true
 must specify what is “more anomalous” prior to observing data

 need to consider the probability of data not observed!
 more than one way to calculate this probability

 test statistic and stopping rule must be specified beforehand
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Testing Hypotheses: Frequentist 
 Test statistic, T
 a random variable – a function of the random variables that

represent the experimental observables
 designed so that the pdf g(t|H0) and g(t|Hi) have limited overlap
 for experiments that measure a single quantity, x, the test statistic can

be the observable itself,  i.e.  T = X. If the measurement is to be
repeated it can be the sample mean.

 for experiments with many observables, sometimes complex
functions of the observables are used (defined by artificial neural
networks, genetic algorithms, boosted decision trees, etc.)

 for a single alternative hypothesis, you cannot do better than the
likelihood ratio

 Stopping rule
 how you decide when enough measurements have been made
 note that g(t|H) depends on the stopping rule
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Testing Hypotheses: Frequentist 
 Example:
 only two hypotheses,  H0  and H1

 larger values of
t are more
anomalous

 report the
P-value:
 dtHtgp

obst
 )|( 0∫

∞
=
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Testing Hypotheses: Frequentist 
 Alternatively, define acceptance and rejection regions

(before data is seen)

dtHtg
cutt

 )|( 0∫
∞

=α

Significance level: 

Power: 

dtHtg
cutt

 )|(1 1∫
∞

=− β

probability of Type-I error 

probability of Type-II error 

tcut

Accept H0 Reject H0
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Testing Hypotheses: Frequentist 
 Suppose that prior to collecting data, the frequentist

decides to set the significance to α = 0.05, which
corresponds to tcut = 2.3

 If the observed result is t = 2.5, the frequentist can state:
“The experiment rejects the null hypothesis at the 95%
confidence level.”
 If the experiment is of public interest, it is not unusual to see

newspapers report:

“Scientists 95% certain that the current theory is wrong!” 
 This is an incorrect statement. Try to come up with a correct

statement suitable for the general public!
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Questions about P-values 
 Is the P-value an outcome of a random variable?

 Describe the probability distribution of P-values if the null
hypothesis is correct?

 Describe the probability distribution of P-values if there is
only one alternative hypothesis, and it is correct?

 Suppose a large number of experiments perform tests
with significance 0.1. If the null hypothesis is true in all
cases, what fraction outcomes will reject the null
hypothesis at the 90% confidence level?
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Question – lifetimes 
 Suppose an unstable particle was observed to exist for

4 s before it decayed. Hypothesis H0 states that it was
particle χ0 , with lifetime τ = 1 s. Hypothesis H1 states
that it was particle χ1, with lifetime τ = 2 s.

 Due to the production processes, the abundance of
particle χ0 is 100 times that of particle χ1.
 Describe how a Frequentist and Bayesian would test the null

hypothesis (H0 in this case). What statements would they
make?
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Questions – Bayesian 
 If the prior belief in the two hypotheses was equal, what

values of t would give you greater belief in H0?

 What about if the
prior belief in H0
was 10 times larger?

 What conclusions
are made if t = 0.1 ?
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Testing Goodness-of-fit 
 When alternative hypotheses are ill-defined or not

specific enough to define probability distributions, the
question still arises whether or not observed data is
compatible
with the null
hypothesis
 Perform a

test of the null
hypothesis

Question: How can you 
define a rejection region? 
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Testing Goodness-of-fit 
 It is not reasonable to choose regions of low probability

density as rejection regions
 The 4 regions below have equal probability – why choose one

of them to be in the
rejection region?

 You can only
choose the
rejection region
if you have some
information about
the alternative
hypotheses
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Testing Goodness-of-fit: Example 
 Test the nature of a coin by flipping it 20 times. Null

hypothesis: the number of heads should follow the
binomial pmf with phead = 0.5.
 Suppose 17 heads are seen.  Does this seem anomalous?

 Calculate the P-value:
probability to observe
a result as anomalous
(or more anomalous)
 with a small P-value,

the data do not
support the null
hypothesis
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Testing Goodness-of-fit: Example (cont.) 
 To calculate the P-value, you need to consider the

distribution of outcomes for alternative hypotheses:
 a rigged coin might have phead > 0.5

 larger number of heads than tails would be expected
 if the rejection region are samples with large number of heads:

 prior to observing data, alternative hypotheses would also
include phead < 0.5 

 if you use data to decide what is anomalous, the P-values will
not be distributed uniformly – decide this beforehand!

P−value = � 𝑓(𝑛|𝑁 = 20, 𝑝 = 0.5)
20

𝑛=17

≅ 0.0013 

P−value = �𝑓(𝑛|𝑁 = 20, 𝑝 = 0.5)
3

𝑛=0

+ � 𝑓(𝑛|𝑁 = 20, 𝑝 = 0.5)
20

𝑛=17

≅ 0.0026 

Testing Hypotheses 157



Testing Goodness-of-fit: Example (cont.) 
 To calculate the P-value, you must also consider the

stopping rule:
 Suppose all we know is that 20 flips were made and there were

3 tails observed.

 The previous calculation assumed the flipper decided to stop
after making 20 flips. P-value = 0.0026.

 Suppose the rule was to stop after observing 3 tails. The
calculation is now:

P−value = �𝑓(𝑛|𝑁 = 19, 𝑝 = 0.5)
2

𝑛=0

≅ 0.00036 
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Questions – flipping coins 
 Suppose you flip a coin from your pocket 20 times

and you find the result: (17 heads, 3 tails)

 Given a P-value of 0.26%, would you be willing to bet 2:1
odds that a second set of 20 flips will yield more heads
than tails?

 Would your answer change if the coin was from the
pocket of a magician (or con-artist)?

 Some might argue that according to the “Law of averages”
that with a fair coin, the next set of 20 flips should have
less heads than tails. What is wrong with that argument?
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Question – drug evaluation 
 Suppose a study was performed to determine the

effectiveness of a new drug that is designed to improve
the chances of a person’s body to accept a donated
kidney and that the rejection rate for untreated patients
is 30%.
 A total of 10 patients received the drug treatment and only 1

suffered kidney rejection.

 Is there good reason to publish these findings in support
of the drug’s effectiveness?
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Question – Casino criminal 
 Suppose a criminal is known to have visited one of the

five casinos in town this past weekend
 The criminal has a tool that allows him to win the special

jackpot for any of the dollar slot machines
 The slot machines are programmed to have a jackpot winner

on average every one million games

 During the weekend, the Apple Casino collected
$230,000 from the slot machines, and there were two
different winners

 Using the Bayesian and Frequentist methods, test the
hypothesis that the criminal did not visit the Apple Casino
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Calculating the significance of a signal 
 Many experiments are designed to search for “signal”

events in the presence of known “background” sources.
 Suppose 2 events were observed with a background

expectation of 0.15.
 Work out the P-value for the hypothesis that there is no

source of “signal” events:

 Remember:  this is not the probability of the no-signal
hypothesis!
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Calculating the significance of a signal 
 It is common to report the significance of a signal with

either the P-value or the corresponding number of
“sigma” for a Gaussian
 This corresponds to the

value of z, such that: P−value = �
1
2𝜋

𝑒−
𝑥2
2

∞

𝑧
𝑑𝑑 

z P-value

1 0.1587 

2 0.0228 

2.33 0.010 

3 0.0014 

4 3.17E-5 

5 2.87E-7 

“Signal  
significance 
is 2.3 σ.” 
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Examples 
 What are the significances of the signals shown below?
 “counting data” are presented in a conventional fashion:

 point indicating the number of observed events (n)
 an “error bar” size ±√n
 expected background as a horizontal bar

0 
1 
2 
3 
4 
5 
6 

0 
1 
2 
3 
4 
5 
6 

0 
1 
2 
3 
4 
5 
6 

A: background 0. 
observe 1 event 

B: background 0.15 
observe 2 events 

C: background 2.0 
observe 6 events 

P-value = 0.0 :  ∞ σ P-value = 0.010 :  2.3 σ P-value = 0.017 :  2.1 σ 
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Question – Higgs discovery 
 Consider this plot showing an early result of a search

for Higgs in the 4 lepton
channel by CMS

 In the range 121-130:
⋅  9 observed
⋅  4.8 expected background

 using these numbers,
what is the significance?

 Must define method
to calculate P-value
before observing data.

http://cms.web.cern.ch/news/observation-new-particle-mass-125-gev 
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Goodness of Fit Methods: Pearson’s χ2 test 

 Most common goodness of fit test
 For measurements modelled as outcomes of Gaussian

random variables, 𝑋𝑖 , with expectation µi and standard 
deviation σi , use the test statistic: 

 under the null hypothesis, χ2  follows the χ2 distribution with m
degrees of freedom.

 Alternative hypotheses would yield larger values, so the
rejection region (i.e. “more anomalous” samples) are those
with larger values of χ2.

∑
=

−
=

m

i i

iiX
1

2

2
2 )(

σ
µχ
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Example: 
 Measuring the resistance of high resistance resistors is

problematic due to the small currents involved. Test the
model that the labelled resistances are correct and that
measurements have a standard deviation given by,

𝜎 𝑅
𝑅

= 0.1
𝑅

10 GΩ
 

R label 
(GΩ) 

R meas 
(GΩ) 

σ 
(GΩ) 

(∆R/σ)2

3.00 3.18 0.09 4.0 

8.00 7.65 0.64 0.3 

10.0 8.5 1.00 2.3 

12.0 14.5 1.44 3.0 

Total 9.6 

P-value = 0.048
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Goodness of Fit Methods: Pearson’s χ2 test 

 Also applied for histograms (bin contents distributed
according to Poisson distributions): 
 provided the expectation for each

bin is large enough (roughly νi > 5) the  
test statistic will follow a distribution 
similar to a χ2 distribution with m degrees of freedom. 

 If total number of events is not predicted by model, test
the distribution of observations using:
 in this case the test statistic will

roughly follow a χ2 distribution with
m −1 degrees of freedom

∑
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Goodness of Fit Methods: Student’s t-tests 

 Testing one Gaussian sample:
 Pearson’s χ2 test is suitable if the model specifies the

expectation and variance.
 If the variance is unknown,  a test of the hypothesis that the

sample arises from a Gaussian distribution with known mean 𝜇
can be performed by using the test statistic, T

 T follows the Student’s t-distribution with (n−1) degrees of
freedom (if the hypothesis is true). 

 To calculate the P-value, one must consider if alternative
hypotheses would yield outcomes of 𝑇 which are a greater
than zero, less than zero, or either.

𝑇 =
𝑋� − 𝜇
𝑆/ 𝑛

where    𝑆2 =
1

𝑛 − 1� 𝑋𝑖 − 𝑋� 2
𝑛

𝑖=1
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Goodness of Fit Methods: Student’s t-tests 

 Testing two Gaussian samples:
 A test of the hypothesis that two samples arise from identical

Gaussian distributions can be performed by using another test
statistic, t

 T follows the Student’s t-distribution with (m+n−2) degrees of
freedom 

𝑇 =
𝑋� − 𝑌�

𝑆 1
𝑚 + 1

𝑛

where    𝑆2 =
∑ 𝑋𝑖 − 𝑋� 2𝑚
𝑖=1 +∑ 𝑌𝑖 − 𝑌� 2𝑛

𝑖=1
𝑚 + 𝑛 − 2
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Goodness of Fit Methods: Student’s t-tests 

 Testing two Gaussian samples with shared variance:
 If the two samples are correlated (i.e. paired data have some

variance in common) a more powerful test that they arise from
identical Gaussian distributions can be performed by using
another test statistic, T

 

 T follows the Student’s t-distribution with (n−1) degrees of
freedom 

𝑇 =
𝐷�

𝑆𝑑/ 𝑛
where    𝑆𝑑2 =

1
𝑛 − 1� 𝐷𝑖 − 𝐷� 2

𝑛

𝑖=1

 𝐷𝑖 = 𝑋𝑖 − 𝑌𝑖  𝐷� = 𝑋� − 𝑌�
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Example 
 Suppose that, untreated, the average growth rate of a

cancer tumour is 1mm per month. Two treatment
regimens,  A and B, are performed on a set of patients and
the results are tabulated below. Summarize the findings by
performing t-tests.
 Null hypothesis:

treatments
are ineffective

 Alternative hypotheses:
treatments reduce or
increase growth rate

Patient A rate 
(mm/mon) 

B rate 
(mm/mon) 

A – B 
(mm/mon) 

Alison 0.9 0.8 0.1 

Bill 1.3 1.1 0.2 

Charlie 0.7 0.6 0.1 

David 0.6 0.5 0.1 

Elmo 1.2 1.1 0.1 

Frank 0.7 0.7 0.0 

average 0.9 0.8 0.1 
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Example: solution 
 Test sample A to null hypothesis (µ = 1 mm/mon):
 �̅� = 0.90   𝑠 = 0.29  𝑡 = −0.85  nDof = 5
 P-value is probability of more anomalous outcomes:
𝑃 𝑇 < −0.85 or 𝑇 > 0.85 = 2 𝑃(𝑇 > 0.85)

 Repeat test for sample B:  𝑡 = −1.94     P−value = 0.11

prob = 0.22 P-value = 0.44
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Example: solution cont. 
 Test that sample A and B arise from the same Gaussian

distributions:
 𝑡 = 0.64    nDof = 10     P−value = 0.54

 Tumor growth varies from one person to another.
Perform the paired data t-test to compare the two
treatments against each other:
 𝑡 = 3.9    nDof = 5     P−value = 0.012

 If hypothesis test significance was set to be 0.05, the null
hypothesis is accepted for the first three tests, but
rejected for the fourth test (95% CL).
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Goodness of Fit Methods: Kolmogorov-Smirnov 

 Popular goodness of fit test for the distribution of a single
continuous observable
 Build an “Empirical Distribution Function” (EDF) from the data,

and compare it to the Cumulative Distribution Function (CDF)
of the null hypothesis
 Test statistic: the largest difference between the two functions: 𝐷

 The rejection region for the test: larger outcomes of 𝐷

 Empirical Distribution Function
 order the sample, increasing in 𝑑𝑖
 increment function by 1/𝑛 after

crossing each data value, 𝑑𝑖

d 

x1 x2 x3 x4 x 

pr
ob

 
0 

1 

CDF 

EDF 
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Goodness of Fit Methods: Kolmogorov-Smirnov 

 Beneficial features:
 no binning required and can be used with small sample sizes
 the test statistic 𝐷, under the null hypothesis, only depends on

the number of data points
 𝐷 = max 𝐸𝐷𝐸 𝑋 − 𝐶𝐷𝐸(𝑋) = max 𝐸𝐷𝐸 𝑌 − 𝐶𝐷𝐸(𝑌)

where 𝑌 = 𝑌(𝑋) 

 Problematic features:
 The PDF for 𝐷𝑛 cannot be written in a simple analytic form

 The cumulative distribution for 𝐷𝑛 can be computed (all that is
needed for P-value)

 Does not produce P-value=0 when 𝑃(𝑑|𝐻0) = 0
 Forced agreement in tails of observable, so the test is most

sensitive in central region
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Example 
 In 2011, the T2K experiment published the first evidence

for the appearance of 𝜈𝑒 interactions in a 𝜈𝜇 beam.
 There were only 6 candidate events (with an expected

background of 1.5 events) in the cylindrical volume of water
that makes up the SuperKamiokande (SK) detector

 The null hypothesis states that 𝜈𝑒
interactions would have equal
probability (and detection efficiency)
throughout the so-called fiducial
volume of the SK detector.  The
observed distribution of the
locations of the interactions
caused some concern.
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Example cont. 
 Prior to analyzing the data, consistency tests checking for

clustering of points along the edge of the fiducial volume
were not considered
 Only after examining the data,

was this feature observed and
considered of interest

 A natural check that the
distribution of points is
consistent with null hypothesis
is to use the observable 𝑟2,
where 𝑟 is the cylindrical
coordinate, since that
observable is uniform in the
null hypothesis. 𝑟 𝑟𝑚𝑚𝑥⁄ 2 

Edge of fiducial volum
e 

d=0.55 
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Example cont. 
 To calculate the P-value, consider the Kolmogorov

cumulative distribution function for n=6:
 

 
 since a large number

of unusual patterns
could have been
observed, not unusual
that one has a P-value
as small as this

 subsequent data did
not show this effect

𝑃 𝐷6 < 0.55 = 0.969 

P-value = 0.031
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Question – Test masses 
 As part of its quality assurance program, a company that

produces calibration blocks for mass scales, weighs each
block after it is produced.
 The company advertises that its 10g blocks are produced with

a standard deviation of 10 mg and an expectation of 10.000 g
 Here are the measurements for the last 5 masses in grams:

 10.01 , 10.02 , 10.01 , 10.01, 10.02

 Assuming the scale that is used is properly calibrated, test
the hypothesis that the company advertisement is correct
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Question – Test masses part II 
 Follow up to previous question…

 Suppose the scale used introduces an unknown variation

 Test the hypothesis that the block production has an
expectation of 10.000 g.
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Question - Lifetimes 
 The lifetime of an isotope produced in an experiment is

expected to be 1.0 s.
 The first 5 isotopes produced had the following decay

times (in seconds)
 0.3 , 1.4,  0.9,  0.2 ,  2.3

 Perform a goodness of fit test to the null hypothesis
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Decision theory 
 This section describes techniques used to test a

hypothesis with data:
 Bayesian: calculate the probability that a hypothesis is true
 Frequentist: calculate the probability of observing data as

anomalous (or more) than what was observed, if the
hypothesis is true

 These tests summarize the outcomes of experiments, but
do not provide enough information to make decisions.

 To make a decision to take action, on the basis of these
outcomes, you must also account for the consequences of
those actions, for any hypothesis that nature might
actually follow.
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Decision theory: Two hypotheses 
 Simplest case, 𝐻0 and 𝐻1:
 The outcome of an observable 𝑋 is 𝑑
 A decision,  𝑑 = 𝑑 𝑑 = 0 or 1,  is made to act in accordance

with 𝐻𝑑

 A negative consequence would arise if the incorrect hypothesis
is chosen. Quantify this by the “Loss function” = 𝐿 (𝐻𝑡𝑟𝑡𝑒,𝐻𝑑)
 could be a financial cost, loss of health, etc.

 Bayesian: choose the decision rule that minimizes the
expected loss, known as the “Risk” = 𝑅 = 𝐸[𝐿]
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Decision theory: Example 
 Consider a Loss Function, 𝐿 (𝐻𝑡𝑟𝑡𝑒,𝐻𝑑), given by:

 If the decision selects 𝐻0, the expected loss is:
 𝑅0 = 𝜆1𝑃(𝐻1|𝑑)

 Likewise if the decision selects 𝐻1, the expected loss is:
 𝑅1 = 𝜆0𝑃(𝐻0|𝑑)

 Select 𝐻0 if the risk is less:  𝜆1𝑃 𝐻1 𝑑 < 𝜆0𝑃(𝐻0|𝑑) 
 i.e. posterior odds:

𝐿 𝐻0,𝐻0 = 0   𝐿 𝐻0,𝐻1 = 𝜆0 
𝐿(𝐻1,𝐻0) = 𝜆1   𝐿(𝐻1,𝐻1) = 0 

𝑃 𝐻0|𝑑
𝑃 𝐻1|𝑑

=
𝑃 𝑑|𝐻0 𝑃 𝐻0
𝑃 𝑑|𝐻1 𝑃 𝐻1

>
𝜆1
𝜆0
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Question 
 You have the job of testing a farm’s water supply for an

organism that is known to have a long term toxic effect on
dairy cattle:
 The incidence of contamination by the organism is relatively

common. About 40% of farms suffer the problem.
 The test is not definitive.  Of all tests that come out positive, 20% are

false positives.
 The test is reasonably efficient, in that 75% of farms with the

contamination will have a positive test result.
 There is a treatment that can be added to water supply to kill

the organism.
 If a contaminated water supply is not treated, the milk production

will drop by 50%
 When the treatment is applied, milk production drops by 5% (no

matter if the water was contaminated or not.
 What action should be taken if the test comes out positive

and if the test comes out negative?
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Parameter Estimation 
 Often, theories describing a physical system have one or

more undetermined parameters (some refer to such a
theory as a composite hypothesis)

 Naturally, the experimental scientist wants to estimate
the value of any unknown parameter(s)
 Suppose an experiment makes n measurements of a single

quantity, x. The model of the experiment describes each x as an
outcome of a random variable, X, whose pdf is f (x|θ ), where θ 
is an unknown parameter.

 The set of n outcomes, called a sample of size n,
𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

can be used to estimate the value of the parameter 𝜃. A 
different sample will produce a different estimate: randomness. 

Estimating Parameters & Maximum Likelihood 188



Statistics, estimators and estimates 
 As before, a statistic is a function of random variables that

represent experimental observables
 When applied for a particular sample, the function returns a

single number. That number is also called a statistic.
 “statistic” refers to both the random variable and the outcome

 An estimator is a statistic used to estimate some
property of the pdf,  f (x|θ )
 examples: an estimator of 𝐸 𝑋  or of the true value of 𝜃 
 notation: an estimator for 𝜃 is written with a hat: Θ� 

 An estimate is the outcome of Θ� when evaluated with a
particular sample
 an estimate is also written with a hat: 𝜃�
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Properties of estimators 
 The estimator is consistent iff it converges to the true

value:

 The bias of an estimator is given by:

 an unbiased estimator has zero bias for all n

 There is no unique rule for forming an estimator. Usually,
estimators are selected which are unbiased and have the
least variance

0     0)|ˆ(|lim >∀=>−Θ
∞→

εεθP
n

θ−Θ= ]ˆ[Eb
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Estimator for expectation value 
 Given a sample of size n, the sample mean is an unbiased

estimator
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Estimator for variance 
 If the expectation value, µ, is unknown, the unbiased

estimator for the variance is

 If µ is known, the unbiased estimator is

 Similarly for covariance:
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Variance of estimators 
 The variance can be calculated as usual:

 or more simply by…
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Questions: Estimators 
 Is the following estimator for expectation value:

 Consistent?
 Unbiased?

 Show that the estimator for variance, when 𝜇 is unknown,
is unbiased.

𝑄� =
1

𝑛 + 10
�𝑋𝑖

𝑛

𝑖=1
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Question: 
 The Monte Carlo transformation method is applied

below with a set of input numbers that are decidedly not
random…

 Compare the estimates for the expectation and variance with
the true values

 To estimate the properties of pdfs, is it better to use a sample
generated by random numbers or a “grid” of numbers?

𝑟 uniform expon  𝜏 = 1 
Gaussian 

𝜇 = 0,𝜎 = 1 
0.1 0.1 0.11 -1.28
0.3 0.3 0.36 -0.52
0.5 0.5 0.69 0.00 
0.7 0.7 1.20 0.52 
0.9 0.9 2.30 1.28 
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Question: uniform distribution 
 Produce 100 uniform random numbers (0 − 1)
 Calculate the sample mean
 Repeat this 50 times and calculate the variance of the

sample means

 Compare this with the expected variance of the
estimator
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Programming hints 
 When using a computer program to calculate the

estimates for expectation value and variance, there is no
need to
 store all values in an array
 loop over the data twice

 instead, keep running sums of
 n, x, y, x2, y2, xy
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Maximum likelihood 
 A general and powerful method for parameter estimation

 Again, consider an experiment that measures a single quantity,
x, modelled by a random variable, X,  that follows the pdf,
f (x|θ). Repeated measurements give the n outcomes, xi … xn.

 According to the model, the probability for the outcomes of
the random variables to be in the ranges xi < Xi < xi + dxi  is

 expect this to be larger for the true value of θ as compared to a
parameter far from the true value

∏
=

n

i
ii dxxf

1

 )|( θ
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Likelihood 
 The likelihood is defined to be

 in frequentist statistics, the likelihood is considered to be a
function of the parameter alone. NOTE: It is not a probability
density in 𝜃

 Numerically it is usually more convenient to calculate the
logarithm of the likelihood function (the so called “log-
likelihood”):

∏
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Maximum likelihood estimator 
 The maximum likelihood estimate for the parameter is

that value of the parameter that maximizes the likelihood
(or log-likelihood)
 the estimate     can be considered as an outcome of the

random variable      (the estimator)

 It turns out that the maximum likelihood estimators
usually have good properties: unbiased, minimum variance

θ̂
Θ̂

Estimating Parameters & Maximum Likelihood 200



Illustration of maximum likelihood 
 Consider a

Gaussian(5,1)
sample of size 100
 adjust the mean…

lnL 
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Illustration of maximum likelihood 
 Adjust the standard

deviation… lnL 
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Illustration of maximum likelihood 
 The likelihood as a function of mean and standard

deviation…

ln 𝐿(𝜇,𝜎) 
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Example of an analytic ML estimator: 
 Consider an experiment measuring decay times of

unstable particles at rest. This can be modelled by a
random variable T that follows the exponential pdf:

 The log-likelihood function is therefore:
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Example of exponential sample: 
 Shown below are 50 random numbers generated

according to the pdf with 𝜏 =  1.

 ML estimate for this
sample is

077.1ˆ =τ
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ML estimators for a Gaussian distribution 

 The log-likelihood for measurements modelled by a
Gaussian distribution with mean µ and variance σ2 is:

 The maximum likelihood estimators are found as usual:
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Maximum likelihood estimators in general 

 For more complex models of experiments, it is not
possible to evaluate the maximum of the likelihood
function analytically
 in this case, use numerical methods to determine the

maximum likelihood estimates:
 most optimization methods find the minimum, not maximum
 for large data sets the likelihood may fall outside the valid range of

real numbers in your programming environment (eg. 10−2000)
 → find the values of the parameters that minimize the negative of the

log-likelihood function
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Question: modified exponential 
 Consider a model that describes measurements by a

random variable with pdf,

 What is the maximum likelihood estimator for the parameter
a, from a sample of size n observations?

 In deriving the form for the estimator, when the derivative of
the log-likelihood function is taken, the term involving 𝑥 alone
appears to drop out. Does this mean that the form of the
estimator is the same whether it is there or not?

0     )( 2 ≥= − xxeaxf ax
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Question: repeated rate measurements 
 Suppose you measure the activity of a radioactive source

by counting the number of decays in one hour.
 You repeat this 𝑚 times. Your data sample is therefore

𝐧 = (𝑛1, 𝑛2,…, 𝑛𝑚) 

 Work out the maximum likelihood estimator for the activity of
the radioactive source from such a sample.

Estimating Parameters & Maximum Likelihood 209



Question: uniform distribution 
 Suppose the model for an experiment is that the

outcomes follow a uniform distribution between 0 and 𝑑
where 𝑑 is unknown.

 What is the maximum likelihood estimator for 𝑑?
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Variance of ML estimators 
 The variance is a measure of the spread a random

variable
 the variance of an estimator is an indication of its accuracy

 For simple pdf’s, the variance can be calculated
analytically:
 example, the variance in lifetime estimator (sample mean) is

the variance of the sample mean
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Variance of ML estimators 
 For the hypothetical lifetime experiment with 50

measurements, the result could be reported as:

 with the interpretation that the 1st number is the estimate and
the 2nd number is the standard deviation of the estimator
 Note: this is not the conventional use of this notation – to be

discussed later

150.0077.1ˆ ±=τ
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Variance of ML estimators: MC approach 

 If it is too difficult to evaluate the variance of the ML
estimators, another approach is to use Monte Carlo
methods to simulate a large number of experiments, and
estimate the variance
from the sample
of estimates
 example: figure

shows the estimates
of 1000 repetitions of
the experiment with 50
lifetime measurements
with τ = 1.077
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MC approach (cont.) 
 Using this approach, m MC samples are used to estimate

standard deviation of the lifetime estimator:

 the estimated standard deviation is 0.15
 Agrees with the analytic result

 This approach cannot always be used: for complex
experiments, large number of repetitions of the
experiment could require too much computer time
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The MC approach and the ensemble 
 Repetition of MC experiments under the same conditions

is possible, since it is a model
 the meaning of “under the same conditions”, however, may not

be so clear
 examples:

 lifetime measurements: same amount of time or same number of
events?

 measurements with variable resolution: same number of events with
each resolution, or not?
 For example, an experiment that has probability of 0.01 that an event is

measured with 100 times better resolution. Suppose the sample contains 9
regular events and 1 high resolution event – how do you choose the
ensemble of experiments?
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Variance of ML estimators: curvature 
 In the large sample limit the likelihood function tends to

follow a Gaussian:

 Numerical methods are used to find both the minimum of the
negative log-likelihood function and it’s second derivatives at
the minimum
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Variance of ML estimators: graphical method 

 If the likelihood function is approximately Gaussian, then

 this approximation is very often used even when the likelihood
function is far from Gaussian
 not necessarily a good approximation!
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Example of graphical method 
 The lifetime experiment with 50 events:

15.0ˆ
16.0ˆ
14.0ˆ

=∆
=∆
=∆

+

−

τ
τ
τ

2
1ln)ˆˆ(ln maxˆ −≅± LL

θ
σθ

15.008.1ˆ
08.1ˆ 16.0

14.0

±=
= +

−

τ
τ

�̂� − Δ�̂�− �̂� + Δ�̂�− �̂� 

ln 𝐿max 

ln 𝐿max −
1
2 
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Question: exponential 
 Using the second derivative of the likelihood function,

estimate the variance of the estimator for the lifetime.
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Question: modified exponential 
 Consider again the model that describes measurements

by a random variable with pdf,

 What is the variance of this estimator?
 About how many observations are required to estimate a to a

relative accuracy of 10%?

0     )( 2 ≥= − xxeaxf ax
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Example of ML with two parameters 
 Suppose that after being excited, a system emits a burst of

light delayed by a random time. The probability distribution for
the time delay is uniform for times between 0 and 𝑡0, and
thereafter falls off exponentially, with the decay constant, 𝜏.

PDF: 𝑓 𝑡 𝑡0, 𝜏 = 1
𝑡0+𝜏

𝑒−𝐻(𝑡−𝑡0)𝑡−𝑡0𝜏

𝑡0 = 1  𝜏 = 1 �̂�0 = 0.975 
�̂� = 0.986 

MC sample with 1000 events: 
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Example of ML with two parameters (cont.) 

 Estimates from
500 similar
experiments:
 appear to

be outcomes
from 2D
Gaussian

𝑡0�� = 0.996 
𝜎�𝑡0 = 0.086 
�̂�̅ = 1.001 
𝜎�𝜏 = 0.046 
𝜌� = −0.61 
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Graphical method with two parameters 
 Sometimes

the result is
summarized
by an ellipse,
within which:
 
 example:

𝑡0� = 0.996
𝜎�𝑡0 = 0.086
�̂� = 1.001
𝜎�𝜏 = 0.046
𝜌� = −0.61

ln 𝐿 > ln 𝐿max − 1
2

𝑡0� − 𝜎�𝑡0
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Extended maximum likelihood 
 This method is used in cases where model parameters

define both
 the distribution of events and
 the event rate

 If the probability for an event to occur is constant in time,
the number of events observed in a fixed time interval
follows a Poisson distribution
 In this case, the likelihood function is given by:

 If 𝜈 = 𝜈(𝜃) the variance of Θ� will be reduced by using the
extended likelihood function

𝐿 𝜈,𝜃 =
𝜈𝑛

𝑛! 𝑒
−𝜈�𝑓(𝑥𝑖 ,𝜃)

𝑛

𝑖=1
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Unphysical estimates 
 Sometimes the ML estimates are unphysical
 Example: mass estimate is negative

 It is important to report all estimates, even those that are
unphysical, so that an average of experiments would not
be biased
 Example: distribution

of estimates from
200 repetitions
of an experiment

𝑚�  

unphysical 
estimates 
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Maximum Likelihood and Bayesian Methods 

 The maximum likelihood method is an ad hoc approach
that has good properties in frequentist statistics

 In the Bayesian approach, it arises directly from Bayes
theorem:
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Maximum Likelihood and Bayesian Methods 

 A Bayesian estimator for a parameter can be the
maximum of the posterior probability density:

 If the prior probability density is uniform (or approximately
uniform, over the range that the likelihood function is large),
the Bayesian estimator is the maximum likelihood estimator
 in the case that the data is “stronger” than the prior belief, the

Bayesian and Frequentist approach are the same

)()( )|( θθαθ PLxP =

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Question: 2 parameter example 
 Explain how to generate MC events according to the

problem with pdf:

 What is the likelihood function?
 Can the maximum likelihood estimates be determined

analytically?

𝑓 𝑡 𝑡0, 𝜏 =
1

𝑡0 + 𝜏
𝑒−𝐻(𝑡−𝑡0)𝑡−𝑡0𝜏
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Question: Extended maximum likelihood 

 At time 𝑡 = 0, an accelerator produces a very large
number, 𝑚, of a particular radioactive isotope within a
detector. The detector records the time of all decays.
After a time period 𝑇, a total of 𝑛 decays were recorded,
a tiny fraction of 𝑚.

 Find the maximum likelihood estimators for the isotope
lifetime using:
 Only the recorded times: (𝑡1, 𝑡2,…, 𝑡𝑛)
 Only the number of isotope decays observed: 𝑛
 Both the recorded times and the number of decays observed

 Compare the variance of the estimators
 Which has the smallest variance?
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Method of Least Squares

D. Karlen / University of Victoria and TRIUMF
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Method of Least Squares
 A special case of the maximum likelihood method
 To be used when the model describes measurements as outcomes of

Gaussian random variables

 The simplest model:
 predicts the means of the Gaussian distributions

 a function of the values of a controlled variable and unknown parameters (that are
to be estimated)

 standard deviations are the same for each random variable
 random variables are independent
 the controlled variable is not random – it is adjusted during the

experiment to study its effect on the measurement

 For example: temperatures measured along the length of a bar
 controlled variable: xi the distance along the length of the bar
 measurements: yi is the temperature at each point
 unknown parameter: thermal conductivity
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Method of Least Squares
 If the model defines the expectation for each

measurement as 𝐸𝐸 𝑌𝑌𝑖𝑖 = 𝜆𝜆(𝑥𝑥𝑖𝑖 ,𝜃𝜃) then the likelihood is 
given by,

 So, the value of θ that maximizes the likelihood function,
minimizes the chi-square function:

 “least squares” = least chi-square
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Variance of the estimators
 The methods developed for the maximum likelihood

method can be applied:
 Curvature method:

 Graphical method:
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Example: Least squares fit to a line
 Assume independent random variables, 𝑌𝑌𝑖𝑖 , with the same

standard deviation
 E[𝑌𝑌𝑖𝑖] = 𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏

𝑎𝑎 = 1
𝑏𝑏 = 1
𝜎𝜎 = 0.4

�𝑎𝑎 = 0.87
�𝜎𝜎𝑎𝑎 = 0.13
�𝑏𝑏 = 1.35
�𝜎𝜎𝑏𝑏 = 0.42
�𝜌𝜌 = −0.91 true values

fit values
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Example: Least squares fit to a line
 The covariance is illustrated by the ellipse:

�𝑎𝑎 = 0.87
�𝜎𝜎𝑎𝑎 = 0.13
�𝑏𝑏 = 1.35
�𝜎𝜎𝑏𝑏 = 0.42
�𝜌𝜌 = −0.91

true point

fit point

𝜒𝜒2 = 𝜒𝜒min
2 + 1
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Example: Least squares fit to a line
 Repeated for 1000 experiments:
 Estimates

distributed
according to a
2D Gaussian

��𝑎𝑎 = 1.00
𝜎𝜎�𝑎𝑎 = 0.12
��𝑏𝑏 = 1.01
𝜎𝜎�𝑏𝑏 = 0.42
�𝜌𝜌 = −0.89
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Question: Least squares fit to a line
 Consider a model with σi = σ, and λ = ax + b, show that

the least square estimates are given by:

 Derive the covariance matrix for the estimators

�𝑎𝑎 =
𝑥𝑥𝑥𝑥 − �̅�𝑥 �𝑥𝑥
𝑥𝑥2 − �̅�𝑥2

=
𝑉𝑉𝑥𝑥𝑥𝑥
𝑉𝑉𝑥𝑥

�𝑏𝑏 = �𝑥𝑥 − �𝑎𝑎�̅�𝑥
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Question: Least squares fit to a line
 Explain the features of the variances of the estimators:
 It is not surprising that they depend on the variance of the

random variables and on the number of random variables
 Is it surprising that it does not depend on the means or

outcomes of the random variables?

 Explain the interesting features of the correlation
between the estimators:
 Why is it negative?
 Why does it not depend on the variance of the random

variables?
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Goodness of fit
 The value of χ2 at the minimum, reflects how well the

data are compatible with the model:
 assuming the model is correct, that there are n data points yi,

and that the parameterization λ is linear in the m parameters
θj, the value of χ2 at the minimum is an outcome of a random 
variable with pdf given by the χ2 distribution with n − m
degrees of freedom

 Derive the P-value: the probability of observing as large a χ2 as
seen or larger
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Example: Goodness of linear fit
 𝜒𝜒2 distribution for 1000 repetitions of the experiment:

5 points
nDOF = 3

12 points
nDOF = 10
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Visual goodness of fit
 For a data plot with many points, one can estimate the

goodness of fit:
 sum the number of standard deviations squared
 check that about 68% of points are within 1 standard deviation

of curve

 if P-value is too small: question the model
 if P-value is too large: question the assigned uncertainties
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Misc examples
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Question 1
 Figure shows data and model
 χ 2 is about 11.1

 What is the P-value
for the goodness of
fit?
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Question 2
 Consider the following data:

x y σy

1 23.4 1.5

2 16.4 5.1

3 20.1 3.7

4 25.0 2.3

5 18.7 3.7

 if a zero-order LS fit is performed: χ2 = 4.4 for 4 d.o.f.
 P-value = 0.35
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Least squares fit to binned data
 Consider an experiment that measures a single quantity, x,

modeled by a random variable, X, that follows the pdf,
f (x|θ). Analyze the sample of n outcomes, x1 … xn:
 Tabulate the n outcomes into bins 𝑖𝑖 = 1 …𝑁𝑁
 Minimize the function:

 yi is the number of entries in bin i



 (since yi are outcomes from a Poisson)

 an approximation: least squares assumes 𝜎𝜎 is not a function of 𝜃𝜃
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Combining measurements with L.S.
 Suppose N experiments performed to estimate a

parameter:
 Use least squares to zeroth order polynomial to best estimate

the parameter:

 well known formula for weighted average
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Least squares fit to correlated data
 If the N measurements are modeled by a general

N-dim Gaussian distribution (with non-zero correlation),
use the full pdf:

( ) ( )[ ]µµπµ 
−−−= −−− xxxf TN 1

2
12/12/ exp)2(),|( VVV

means covariance
determinant inverse

( ) ( )( ) ( )( )θµθµθχ 
−−=⇒ − xx T 12 V
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Errors and Confidence Intervals

D. Karlen / University of Victoria and TRIUMF
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Statistical “errors” (aka “uncertainties”)
 We have discussed frequentist methods to estimate one

or more model parameters, using experimental data
 the “unpredictable” elements of experiments are modeled by

random variables
 use the model to define an estimator (a random variable)

 the parameter estimate is an outcome of the random variable

 To convey more information about the result of the
experiment, one can report the result as follows:

m = 203 ± 4 g
 where the second value is the standard deviation of the

estimator (also known as the standard error)
 NOTE: this is not the conventional definition
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Error propagation
 Sometimes an estimated parameter needs to be

transformed, for example:
 change of units: g to kg
 experiment measures m2 but you want to know m

 The error of the transformed parameter is estimated by
error propagation
 use the first order Taylor expansion to evaluate how much the

transformed parameter changes

 example: x = m2 then
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Error propagation

 Consider the possible outcomes for x
 described by a random variable of mean x0 and variance σx

2

 If x is an outcome of a random variable X, y can be
considered to be an outcome of a random variable Y:

 The variance of  Y is therefore

 example: x = m2 =256±9 g2 then y = ? ± ?
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Combining errors
 Often measurements are combined to estimate the value

of a model parameter
 Examples:
 measurements that estimate the same parameter:

 make an average (or weighted average)

 measurements that estimate different parameters:
 measure the acceleration of an particle in a known electric field: this

determines q/m. In a second experiment, measure the mass of the
particle. To estimate the charge of the particle, multiply these two
estimates.

 The error of the combination depends on the errors of
the individual measurements and whether the
measurements are independent
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Combining errors
 The covariance is used to approximate the variance of a

function of more than one random variable
 again use the first order Taylor expansion:

 then:

 we only need to know the mean and covariance of X in order to
estimate the mean and variance of Y
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Examples
 Sum:

 this is exact, since higher order Taylor series terms are all zero
 for a sum, “errors are added in quadrature”

 Product:

 for a product, “relative errors are added in quadrature”
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Examples: Positive and negative correlation

 Consider the two cases below:
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Question: Parameter transformations 
 The mass-squared of a block is estimated to be:

𝑚𝑚2 = 256 ± 9 g2
 How would you report the estimate for the mass?

𝑚𝑚 = ? ± ? g

 The cosine of a small angle is estimated to be:
cos𝜃𝜃 = 0.95 ± 0.01

 How would you report the estimate for the angle alone?

 For both examples, check whether the transformed
interval corresponds to the original interval.
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Question: Combining errors
 Consider measurements of the resistance of a resistor

undertaken by two people, one right after another.
 Suppose repeated measurements give different results because:

 variable quality of the contact between ohm-meter and resistor
 slow variations of the temperature of the ohm-meter

 To model this situation:, use two random variables to
represent future measurements by the two people. Assume
that the two measurements are done at the same temperature.

 What is the variance of the average of the two random
variables?

𝑋𝑋 = 𝜇𝜇 + 𝐶𝐶𝑋𝑋 + 𝑇𝑇

𝑌𝑌 = 𝜇𝜇 + 𝐶𝐶𝑌𝑌 + 𝑇𝑇

𝐸𝐸 𝐶𝐶𝑋𝑋 = 0 𝐸𝐸 𝑇𝑇 = 𝜇𝜇𝑡𝑡
𝐸𝐸 𝐶𝐶𝑌𝑌 = 0
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Question: Positive and negative correlation

 Explain the interesting results from the examples of
combing random variables with positive and negative
correlation:
 Why do the sum and products have smaller variance when the

random variables are negatively correlated
 Why is the situation reversed for the division

 To most accurately estimate the amount of evaporation
from a beaker of water after heating, is it better to make
the two measurements before and after with the same
scale, or with different scales?
 Explain in terms of correlation
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Statistical vs Systematic Errors
 Frequentists treat statistical and systematic errors very

differently
 Statistical error: refers to those aspects that would cause

identical repetitions of an experiment to yield different
estimates of the parameter
 eg. unpredictable (random) factors, quantum effects

 Systematic error: refers to those aspects that would cause
identical repetitions of an experiment to consistently yield a
parameter estimate that differs from the true value
 eg. calibration errors, incorrect model assumptions

 Often reported as: m = 203 ± 4 (stat) ± 3 (sys) g
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Systematic errors
 Unlike statistical errors, the effect of systematic errors

are not reduced by averaging several measurements
 furthermore, the existence of systematic errors cannot be

detected by seeing different outcomes of identical
measurements

 To evaluate the magnitude of systematic errors, you need
to consider the outcomes of ‘altered’ experiments or
models
 Suppose you measure the current in a circuit by measuring the

voltage across a 100Ω resistor.
 If the resistance of the resistor is not well known, this leads to a

systematic error in the measurement of the current
 In this case, you need to consider the outcomes of experiments that

use different resistors
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Systematic errors
 What range of ‘alteration’ is appropriate?
 In the case of the resistor, the range of resistances should

reflect our knowledge of its resistance
 manufacture may specify the accuracy of their resistors (eg. 1%)
 we may have measured the resistance with a meter that is known to

be accurate to 1%

 The situation could then be modelled by there being a pile of
resistors, having a distribution of resistances with mean 100 Ω
and standard deviation of I Ω. You choose one resistor, and
make the measurement.
 Hypothetically, you could repeat the experiment by selecting another

resistor.
 In this way, a systematic error is evaluated like a hypothetical statistical

error.
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Question: Geiger counter uncertainties
 Suppose you want to measure the activity of a radioactive

source, using a Geiger counter that has an efficiency of
90±3%.
 In 100 seconds the counter detects 49,235 counts. What is the

best estimate of the activity and what are the statistical and
systematic errors?
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Intervals
 So far, our treatment of ‘errors’ has been simplified.
 A rigorous treatment of errors is made by considering

intervals.
 Interval = range of values
 In Bayesian statistical analysis, one uses credible intervals
 In frequentist statistical analysis, confidence intervals are used

 If someone uses the word “interval”, instead of “error”,
they are probably being more rigorous!
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Bayesian Intervals – Credible Intervals
 As a result of an experiment, the Bayesian updates his/her

belief for the parameter:
 posterior-belief ∝ likelihood × prior-belief

P(θ|x) ∝ L(θ) π(θ)
 point estimate: the mode of the posterior-belief
 a credible interval [a,b] is formed and contains a known

amount of probability, for example

 interpretation: “the degree of belief that parameter is within the fixed
interval [a,b] is 90%”

 note: many intervals can satisfy the relation

9.0 )|( =∫ θθ dxP
b

a
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Bayesian systematic uncertainties

Errors and Confidence Intervals

 Systematic uncertainty is handled naturally within the
Bayesian framework

 The physics and detector model are described in terms of
physics parameters, 𝜃𝜃, and systematic parameters, 𝜂𝜂
 Often the systematic parameters are not of interest, and are

given the name “nuisance parameters”

 One simply marginalizes over the systematic parameters,
to get the posterior degree of belief of the physics
parameters alone:

𝑃𝑃 𝜃𝜃 𝑥𝑥 = ∫𝑃𝑃(𝜃𝜃, 𝜂𝜂|𝑥𝑥)𝑑𝑑𝜂𝜂 ∝ ∫𝑃𝑃(𝑥𝑥|𝜃𝜃, 𝜂𝜂)𝜋𝜋(𝜃𝜃)𝜋𝜋(𝜂𝜂)𝑑𝑑𝜂𝜂
 Markov chain Monte Carlo is often used to derive the

credible intervals of the marginalized posterior
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Frequentist Intervals – Confidence Intervals

 Confidence Intervals are formed in such a way that they
contain the true value(s) of the parameter(s) for a
predetermined fraction of repeated experiments, say 90%
 the boundaries of the intervals are modeled by random

variables:
 interpretation: “90% of such intervals contain the true value”

 they must satisfy this condition for any possible true value of the
parameter (this property is known as “coverage”)

 in order to have correct coverage, the analysis procedure must
be fixed before examining the data

9.0)( =Θ≤≤Θ baP θ
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Constructing confidence intervals
 Neyman [1937] first defined the construction of such

intervals:
 consider measurements modeled by a random variable X, with

pdf f (x|θ):
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Constructing confidence intervals
 select a portion of the pdfs (with content α)
 for example the 68% central region:
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Constructing confidence intervals
 select a portion of the pdfs (with content α)
 for example the 68% central region:
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Constructing confidence intervals
 this gives the following confidence belt:
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Constructing confidence intervals
 The (frequentist) probability for the random interval to

contain the true parameter is α
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confidence
interval

α = fraction of
experiments whose
outcome is within
the belt
• only for those
experiments, will the
CI will contain the
true value

so, the fraction of CI’s
that contain the true
value = α
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Confidence intervals: special cases 

θ̂

 The simplest case, frequently encountered, is when the
estimator is unbiased and distributed as a Gaussian with
variance independent of the true parameter:

θ • In this case, the 68.3% interval
is the standard deviation of the
estimator.

• This approach is often used
even when the above conditions
are not satisfied: an approximation

These lines have
the same length
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Confidence intervals: special cases

# σ C.L.
1 68.3%
2 95.4%
3 99.7%

 For this special case, confidence intervals are easily
calculated:
 Central confidence intervals:

 One sided confidence intervals:

# σ C.L.
1.645 90%
1.960 95%
2.576 99%

# σ C.L.
1 84.1%
2 97.7%
3 99.9%

# σ C.L.
1.282 90%
1.645 95%
2.326 99%
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Confidence intervals: special cases
 For this special case where there are more than one

parameter, the confidence region can also be directly
calculated by the covariance of the estimators:

1θ

2θ

n = 1 n = 2 n = 3 n = 4
C.L. ∆ lnL ∆ lnL ∆ lnL ∆ lnL
68.3% 0.5 1.15 1.77 2.36
90% 1.36 2.31 3.13 3.89
95% 1.92 3.00 3.91 4.75

Confidence region construction
for n parameters:
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Question: Mass of block
 An apparatus to measure the mass of a block is modeled

by a random variable that is unbiased and has a standard
deviation of 2 g. Suppose the mass of the block is
measured 100 times, and the mean value of the
measurements was 123.45 g.
 What is the 95% central confidence interval for the estimate of

the mass of the block?
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Confidence intervals: Discrete RV
 For experiments with a discrete observable (like the

Poisson distribution) the procedure has to be modified:
 The portion of the pmf selected, for each true value of the

parameter, must contain at least the stated confidence level.
 Since observables are discrete, one cannot always form a simply

connected set of them that have exactly a given probability
 As a result, the confidence belt is “chunky” and the frequentist

probability for the random interval to contain the true value is greater
than the stated confidence interval (this is known as over-coverage)
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Confidence belt for Poisson
 The central 80%

confidence belt
is indicated:
 for any value

of ν, at least 80% of
the pmf is contained
in the belt

0
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ν

n

for ν = 4.9, the belt
contains n ∈ [2,8] 

for n = 3, the belt
contains ν ∈ [1.1,6.7] 
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Confidence intervals for Poisson
 For the Poisson distribution, the following table can be

used to find the interval [a,b]:

n obs
lower limit a upper limit b

α=0.1 α=0.05 α=0.01 β=0.1 β=0.05 β=0.01
0 - - - 2.30 3.00 4.61
1 0.11 0.05 0.01 3.89 4.74 6.64
2 0.53 0.36 0.15 5.32 6.30 8.41
3 1.10 0.82 0.44 6.68 7.75 10.04
4 1.74 1.37 0.82 7.99 9.15 11.60
5 2.43 1.97 1.28 9.27 10.51 13.11
6 3.15 2.61 1.79 10.53 11.84 14.57
7 3.89 3.29 2.33 11.77 13.15 16.00
8 4.66 3.98 2.91 12.99 14.43 17.40
9 5.43 4.70 3.51 14.21 15.71 18.78

10 6.22 5.43 4.13 15.41 16.96 20.14

)|(
)|(

obs

obs

bnNP
anNP

≤=
≥=

β
α
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Question 1
 Consider an experimental analysis in which the estimator

for the parameter θ is unbiased and follows a Gaussian
pdf with variance

 If the estimate is 3.0, what is the 68.3% central confidence
interval for the parameter?

2 25.0 θ=V
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Question 2
 Consider an experiment that counts the number of

occurrences in a Poisson process whose expectation
value is 2.7. What fraction of measurements would report
a central 80% confidence interval that
contains the true value? n f(n|ν=2.7)

0 0.067
1 0.181
2 0.245
3 0.220
4 0.149
5 0.080
6 0.036
7 0.014
8 0.005
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Confidence Intervals near a boundary
 Frontier experiments tend to search for new phenomena:

effects that are at the edge of detectability (or beyond)
 number of “signal” events observed above known background
 mass of the electron neutrino

 In these cases there is a physical boundary
 nsignal is not negative
 mν is not negative

 The point estimate and interval can be in these non-
physical regions:
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Neutrino mass
 Use independent measurements of E and p:

2m̂

2m

222ˆ pEm −=

90% central confidence belt

AB

What is confidence
interval for experiment
A? What about B?
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Neutrino mass upper limit
 When it is not expected to measure the parameter, but

to place a limit, a one sided belt can be used:

2m̂

2m

95% upper confidence belt

AB

What is 95% CL upper 
limit for experiment A? 
What about B?
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Special cases:
 Experiment A will have a very small upper limit
 perhaps even smaller than the “competition” that had a better

experiment!

 Experiment B will have an empty interval
 The neutrino mass is in an empty interval at the 95%

confidence level!
 will happen for 5% of measurements if mass is zero
 it is not valid to change CL to 99% so that upper limit is above

zero

 One approach (even used by frequentist physicists!) is to
use the Bayesian approach
 use a uniform prior for mν > 0
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Summary
 Classical confidence intervals are designed so that a

known fraction of them contain the true value
 in order to ensure this behaviour, the choice of the confidence

level (or any aspect of the analysis) must not depend on the
data observed

 some intervals are known not to contain the true value
 need to be reported in any case, for averaging with other experiments

 Bayesian credible intervals
 are never empty
 rely on representing the prior degree of belief
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